// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/garbage_collector.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/tensor.h" namespace paddle { namespace framework { namespace details { using ReferenceCountMap = std::unordered_map; using AtomicReferenceCountMap = std::unordered_map>; using DeviceReferenceCountMap = std::unordered_map>; using AtomicDeviceReferenceCountMap = std::unordered_map>; using DeviceGarbageCollectorMap = std::unordered_map>>; class ReferenceCountOpHandle : public OpHandleBase { public: ReferenceCountOpHandle(ir::Node *node, const Scope *scope, const platform::CUDAPlace &place, const std::vector &var_names, GarbageCollector *gc, AtomicReferenceCountMap *ref_cnts) : OpHandleBase(node), scope_(scope), var_names_(var_names), gc_(gc), ref_cnts_(ref_cnts) { dev_ctx_ = static_cast( platform::DeviceContextPool::Instance().Get(place)); if (IsStreamGarabageCollector()) { PADDLE_ENFORCE(cudaSetDevice(place.device)); PADDLE_ENFORCE(cudaEventCreateWithFlags(&event_, cudaEventDisableTiming)); } } ~ReferenceCountOpHandle() { if (IsStreamGarabageCollector()) { auto gpu_place = boost::get(dev_ctx_->GetPlace()); PADDLE_ENFORCE(cudaSetDevice(gpu_place.device)); PADDLE_ENFORCE(cudaEventDestroy(event_)); } } std::string Name() const override { return "reference_count"; } protected: void RunImpl() override { auto *exec_scope = scope_->FindVar(kLocalExecScopeName)->Get(); std::vector tensors; for (auto &name : var_names_) { auto it = ref_cnts_->find(name); if (it == ref_cnts_->end()) continue; auto *var = exec_scope->FindVar(name); if (var == nullptr || !var->IsType()) continue; if (it->second.fetch_sub(1) <= 1) { tensors.emplace_back(var->GetMutable()); } } if (!tensors.empty()) { ClearTensors(tensors); } } private: void ClearTensors(const std::vector &tensors) { auto *gc = dynamic_cast *>(gc_); if (gc != nullptr) { auto compute_stream = dev_ctx_->stream(); auto callback_stream = gc->stream(); auto callback_func = [=]() { PADDLE_ENFORCE(cudaEventRecord(event_, compute_stream)); PADDLE_ENFORCE(cudaStreamWaitEvent(callback_stream, event_, 0)); }; gc_->Add(tensors, callback_func); } else { gc_->Add(tensors); } } bool IsStreamGarabageCollector() const { return dynamic_cast *>(gc_) != nullptr; } const Scope *scope_; platform::CUDADeviceContext *dev_ctx_; std::vector var_names_; GarbageCollector *gc_; // not own AtomicReferenceCountMap *ref_cnts_; // not own cudaEvent_t event_; }; } // namespace details } // namespace framework } // namespace paddle