# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from py_paddle import swig_paddle import util import numpy as np import unittest class TestIVector(unittest.TestCase): def test_createZero(self): m = swig_paddle.IVector.createZero(10, False) self.assertIsNotNone(m) for i in xrange(10): self.assertEqual(m[i], 0) m[i] = i self.assertEqual(m[i], i) m = swig_paddle.IVector.createZero(10) self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu()) self.assertEqual(m.getData(), [0] * 10) def test_create(self): m = swig_paddle.IVector.create(range(10), False) self.assertIsNotNone(m) for i in xrange(10): self.assertEqual(m[i], i) m = swig_paddle.IVector.create(range(10)) self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu()) self.assertEqual(m.getData(), range(10)) def test_cpu_numpy(self): vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32") iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec, False) self.assertEqual(vec.shape[0], int(iv.__len__())) vec[4] = 832 for i in xrange(len(iv)): self.assertEqual(vec[i], iv[i]) vec2 = iv.toNumpyArrayInplace() vec2[1] = 384 for i in xrange(len(iv)): self.assertEqual(vec[i], iv[i]) self.assertEqual(vec2[i], iv[i]) def test_gpu_numpy(self): if swig_paddle.isGpuVersion(): vec = swig_paddle.IVector.create(range(0, 10), True) assert isinstance(vec, swig_paddle.IVector) self.assertTrue(vec.isGpu()) self.assertEqual(vec.getData(), range(0, 10)) num_arr = vec.copyToNumpyArray() assert isinstance(num_arr, np.ndarray) # for code hint. num_arr[4] = 7 self.assertEquals(vec.getData(), range(0, 10)) vec.copyFromNumpyArray(num_arr) expect_vec = range(0, 10) expect_vec[4] = 7 self.assertEqual(vec.getData(), expect_vec) def test_numpy(self): vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32") iv = swig_paddle.IVector.createVectorFromNumpy(vec) self.assertEqual(iv.isGpu(), swig_paddle.isUsingGpu()) self.assertEqual(iv.getData(), list(vec)) class TestVector(unittest.TestCase): def testCreateZero(self): v = swig_paddle.Vector.createZero(10, False) self.assertIsNotNone(v) for i in xrange(len(v)): self.assertTrue(util.doubleEqual(v[i], 0)) v[i] = i self.assertTrue(util.doubleEqual(v[i], i)) v = swig_paddle.Vector.createZero(10) self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu()) self.assertEqual(v.getData(), [0] * 10) def testCreate(self): v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)], False) self.assertIsNotNone(v) for i in xrange(len(v)): self.assertTrue(util.doubleEqual(v[i], i / 100.0)) self.assertEqual(100, len(v)) v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)]) self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu()) self.assertEqual(100, len(v)) vdata = v.getData() for i in xrange(len(v)): self.assertTrue(util.doubleEqual(vdata[i], i / 100.0)) def testCpuNumpy(self): numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32") vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr, False) assert isinstance(vec, swig_paddle.Vector) numpy_arr[0] = 0.1 for n, v in zip(numpy_arr, vec): self.assertTrue(util.doubleEqual(n, v)) numpy_2 = vec.toNumpyArrayInplace() vec[0] = 1.3 for x, y in zip(numpy_arr, numpy_2): self.assertTrue(util.doubleEqual(x, y)) for x, y in zip(numpy_arr, vec): self.assertTrue(util.doubleEqual(x, y)) numpy_3 = vec.copyToNumpyArray() numpy_3[0] = 0.4 self.assertTrue(util.doubleEqual(vec[0], 1.3)) self.assertTrue(util.doubleEqual(numpy_3[0], 0.4)) for i in xrange(1, len(numpy_3)): util.doubleEqual(numpy_3[i], vec[i]) def testNumpy(self): numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32") vec = swig_paddle.Vector.createVectorFromNumpy(numpy_arr) self.assertEqual(vec.isGpu(), swig_paddle.isUsingGpu()) vecData = vec.getData() for n, v in zip(numpy_arr, vecData): self.assertTrue(util.doubleEqual(n, v)) def testCopyFromNumpy(self): vec = swig_paddle.Vector.createZero(1, False) arr = np.array([1.3, 3.2, 2.4], dtype="float32") vec.copyFromNumpyArray(arr) for i in xrange(len(vec)): self.assertTrue(util.doubleEqual(vec[i], arr[i])) if __name__ == '__main__': swig_paddle.initPaddle("--use_gpu=0") suite = unittest.TestLoader().loadTestsFromTestCase(TestVector) unittest.TextTestRunner().run(suite) if swig_paddle.isGpuVersion(): swig_paddle.setUseGpu(True) unittest.main()