/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/fluid/operators/maxout_op.h" #include namespace paddle { namespace operators { using framework::Tensor; class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker { public: MaxOutOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", "(Tensor) The input tensor of maxout operator. " "The format of input tensor is NCHW. Where N is batch size, C is the " "number of channels, H and W is the height and width of feature."); AddOutput("Out", "(Tensor) The output tensor of maxout operator." "The format of output tensor is also NCHW." "Where N is batch size, C is " "the number of channels, H and W is the height and " "width of feature."); AddAttr( "groups", R"DOC("Specifies how many groups the input tensor will be split" "in the channel dimension. And the number of output channel is " "the number of channels divided by groups.." )DOC"); AddComment(R"DOC( MaxOut Operator. Assumed the input shape is (N, Ci, H, W). The output shape is (N, Co, H, W). Then $Co = Ci / groups$ and the operator formula is as follows: $$ y_{si+j} = \max_k x_{gsi + sk + j} \\ g = groups \\ s = \frac{input.size}{num\_channels} \\ 0 \le i < \frac{num\_channels}{groups} \\ 0 \le j < s \\ 0 \le k < groups $$ Please refer to Paper: - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf - Multi-digit Number Recognition from Street View \ Imagery using Deep Convolutional Neural Networks: \ https://arxiv.org/pdf/1312.6082v4.pdf )DOC"); } }; class MaxOutOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MaxoutOp" "should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of MaxoutOp should not be null."); auto in_x_dims = ctx->GetInputDim("X"); int groups = ctx->Attrs().Get("groups"); // check groups > 1 PADDLE_ENFORCE_GT(groups, 1, "groups should be larger than 1 in maxoutop"); std::vector output_shape({in_x_dims[0], in_x_dims[1] / groups}); output_shape.push_back(in_x_dims[2]); output_shape.push_back(in_x_dims[3]); ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); } }; class MaxOutOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "Input(X@GRAD) should not be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, paddle::framework::DefaultGradOpDescMaker) REGISTER_OPERATOR(maxout_grad, ops::MaxOutOpGrad) REGISTER_OP_CPU_KERNEL( maxout, ops::MaxOutKernel); REGISTER_OP_CPU_KERNEL( maxout_grad, ops::MaxOutGradKernel);