// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifdef LITE_SUBGRAPH_WITH_XPU #define LITE_WITH_XPU 1 #endif #ifndef PADDLE_WITH_ARM #define LITE_WITH_X86 1 #endif #include "paddle/fluid/inference/lite/engine.h" #include namespace paddle { namespace inference { namespace lite { bool EngineManager::Empty() const { return engines_.size() == 0; } bool EngineManager::Has(const std::string& name) const { if (engines_.count(name) == 0) { return false; } return engines_.at(name).get() != nullptr; } paddle::lite_api::PaddlePredictor* EngineManager::Get( const std::string& name) const { return engines_.at(name).get(); } paddle::lite_api::PaddlePredictor* EngineManager::Create( const std::string& name, const EngineConfig& cfg) { // config info for predictor. paddle::lite_api::CxxConfig lite_cxx_config; lite_cxx_config.set_model_buffer( cfg.model.c_str(), cfg.model.size(), cfg.param.c_str(), cfg.param.size()); lite_cxx_config.set_valid_places(cfg.valid_places); #ifdef PADDLE_WITH_ARM lite_cxx_config.set_threads(cfg.cpu_math_library_num_threads); #else lite_cxx_config.set_x86_math_num_threads(cfg.cpu_math_library_num_threads); #endif #ifdef LITE_SUBGRAPH_WITH_XPU // Deprecated in Paddle-Lite release/v2.8 lite_cxx_config.set_xpu_workspace_l3_size_per_thread( cfg.xpu_l3_workspace_size); lite_cxx_config.set_xpu_l3_cache_method(cfg.xpu_l3_workspace_size, cfg.locked); lite_cxx_config.set_xpu_conv_autotune(cfg.autotune, cfg.autotune_file); lite_cxx_config.set_xpu_multi_encoder_method(cfg.precision, cfg.adaptive_seqlen); lite_cxx_config.set_xpu_dev_per_thread(cfg.device_id); if (cfg.enable_multi_stream) { lite_cxx_config.enable_xpu_multi_stream(); } #endif #ifdef LITE_SUBGRAPH_WITH_NPU lite_cxx_config.set_nnadapter_device_names(cfg.nnadapter_device_names); lite_cxx_config.set_nnadapter_context_properties( cfg.nnadapter_context_properties); lite_cxx_config.set_nnadapter_model_cache_dir(cfg.nnadapter_model_cache_dir); if (!cfg.nnadapter_subgraph_partition_config_path.empty()) { lite_cxx_config.set_nnadapter_subgraph_partition_config_path( cfg.nnadapter_subgraph_partition_config_path); } if (!cfg.nnadapter_subgraph_partition_config_buffer.empty()) { lite_cxx_config.set_nnadapter_subgraph_partition_config_buffer( cfg.nnadapter_subgraph_partition_config_buffer); } for (size_t i = 0; i < cfg.nnadapter_model_cache_token.size(); ++i) { lite_cxx_config.set_nnadapter_model_cache_buffers( cfg.nnadapter_model_cache_token[i], cfg.nnadapter_model_cache_buffer[i]); } #endif if (cfg.use_opencl) { lite_cxx_config.set_opencl_binary_path_name(cfg.opencl_bin_path, cfg.opencl_bin_name); lite_cxx_config.set_opencl_tune(cfg.opencl_tune_mode); lite_cxx_config.set_opencl_precision(cfg.opencl_precision_type); } // create predictor std::shared_ptr p = paddle::lite_api::CreatePaddlePredictor(lite_cxx_config); engines_[name] = std::move(p); return engines_[name].get(); } void EngineManager::DeleteAll() { for (auto& item : engines_) { item.second.reset(); } } } // namespace lite } // namespace inference } // namespace paddle