/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/cross_entropy_grad_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/visit_type.h" #include "paddle/phi/kernels/copy_kernel.h" #include "paddle/phi/kernels/funcs/axis_utils.h" #include "paddle/phi/kernels/funcs/eigen/common.h" namespace phi { template void CrossEntropyWithSoftmaxGradCPUKernel(const CPUContext& dev_ctx, const DenseTensor& label, const DenseTensor& softmax, const DenseTensor& loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis, DenseTensor* logits_grad) { const DenseTensor* out_grad = &loss_grad; DenseTensor* logit_grad = logits_grad; if (logit_grad != &softmax || !use_softmax) { phi::Copy(dev_ctx, softmax, dev_ctx.GetPlace(), false, logit_grad); } const int rank = logit_grad->dims().size(); const int axis_v = phi::funcs::CanonicalAxis(axis, rank); int axis_dim = logit_grad->dims()[axis_v]; PADDLE_ENFORCE_GT( axis_dim, 0, phi::errors::InvalidArgument( "The axis dimention should be larger than 0, but received " "axis dimention is %d.", axis_dim)); const int n = phi::funcs::SizeToAxis(axis_v, logit_grad->dims()); PADDLE_ENFORCE_GT( n, 0, phi::errors::InvalidArgument( "The size of axis should be larger than 0, but received " "SizeToAxis of logit_grad is %d.", n)); const int d = phi::funcs::SizeFromAxis(axis_v, logit_grad->dims()); DenseTensor logit_grad_2d(*logit_grad); logit_grad_2d.Resize({n, d}); DenseTensor labels_2d(label); labels_2d.Resize({n, label.numel() / n}); DenseTensor out_grad_2d(*out_grad); out_grad_2d.Resize({n, d / axis_dim}); auto out_grad_mat = EigenMatrix::From(out_grad_2d); auto logit_grad_mat = EigenMatrix::From(logit_grad_2d); auto& place = *dev_ctx.eigen_device(); if (!use_softmax) { // use_softmax step1 if (soft_label) { auto lbl_mat = EigenMatrix::From(labels_2d); logit_grad_mat.device(place) = (-lbl_mat / logit_grad_mat); // for each sample ,i is sample id logit_grad_mat.device(place) = out_grad_mat.broadcast(Eigen::DSizes(1, axis_dim)) * logit_grad_mat; } else { // use_softmax step2 const auto* label_data = label.data(); T* logit_grad_data = logit_grad->data(); const T* out_grad_data = out_grad->data(); const int remain = d / axis_dim; for (int i = 0; i < n; ++i) { // for each sample_1_dim for (int j = 0; j < remain; j++) { // for each sample_other_dims int idx = i * remain + j; // this sample's label_idx. for 1d case, // remain=1 and j=0, so, idx = i auto lbl = static_cast(label_data[idx]); if (lbl == ignore_index) { for (int k = 0; k < axis_dim; ++k) { // for each class id's label logit_grad_data[i * d + k * remain + j] = 0; } } else { // only for this sample's label_idx, the label is 1, others is 0, // so, only compute this label_idx's class logit_grad_data[i * d + lbl * remain + j] = (-1 / logit_grad_data[i * d + lbl * remain + j]) * out_grad_data[idx]; for (int k = 0; k < axis_dim; ++k) { // for each class id's label if (k != label_data[idx]) { // label_data[idx]: this sample's label logit_grad_data[i * d + k * remain + j] = 0; } } } } } } return; } // for use_softmax=False, continue if (soft_label) { // when soft_label = True, ignore_index is not supported auto lbl_mat = EigenMatrix::From(labels_2d); logit_grad_mat.device(place) = out_grad_mat.broadcast(Eigen::DSizes(1, axis_dim)) * (logit_grad_mat - lbl_mat); // for each sample, i is sample id // 1) compute dy/dx by p_j - y_j or P-Y, where j is class id, // P=logit_grad_mat[i] is all class's probs, Y=lbl_mat[i] is // all class's label // 2) compute dy * dy/dx by Chain rule, dy=out_grad_mat[i] // for high dims, e.g. (n,c) or (n,d1,...,dm, c), compute grad by matrix // operation } else { logit_grad_mat.device(place) = logit_grad_mat * // element_wise multiply out_grad_mat.broadcast(Eigen::DSizes(1, axis_dim)); const auto* label_data = label.data(); T* logit_grad_data = logit_grad->data(); const T* out_grad_data = out_grad->data(); const int remain = d / axis_dim; for (int i = 0; i < n; ++i) { // for each sample_1_dim for (int j = 0; j < remain; j++) { // for each sample_other_dims int idx = i * remain + j; // this sample's label_idx. for 1d case, // remain=1 and j=0, so, idx = i auto lbl = static_cast(label_data[idx]); if (lbl == ignore_index) { for (int k = 0; k < axis_dim; ++k) { // for each class id's label logit_grad_data[i * d + k * remain + j] = 0; } } else { // only for this sample's label_idx, the label is 1, others is 0, // so, only compute this label_idx's class // for 1d case, remain=1 and j=0, so, [i * d + label_data[idx] * // remain + j] = [i * d + label_data[idx]] // let idx_x = i * d + label_data[idx] * remain + j, // logit_grad_data[idx_x] = logit_grad_data[idx_x] - // out_grad_data[idx] // note: logit_grad_mat = logit_grad_mat * out_grad_mat // so: logit_grad_data[idx_x] = (logit_grad_data[idx_x] - 1) * // out_grad_data[idx] // means: dy/dp * dy= ( p - y ) * dy logit_grad_data[i * d + lbl * remain + j] -= out_grad_data[idx]; } } } } } template void CrossEntropyWithSoftmaxGradKernel(const Context& dev_ctx, const DenseTensor& label, const DenseTensor& softmax, const DenseTensor& loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis, DenseTensor* logits_grad) { auto dtype = label.dtype(); if (soft_label) { PADDLE_ENFORCE_EQ( dtype, paddle::experimental::CppTypeToDataType::Type(), phi::errors::InvalidArgument("The Input(Label) should be with the " "same data type as kernel data type.")); CrossEntropyWithSoftmaxGradCPUKernel(dev_ctx, label, softmax, loss_grad, soft_label, use_softmax, numeric_stable_mode, ignore_index, axis, logits_grad); } else { PD_VISIT_INTEGRAL_TYPES( dtype, "CrossEntropyWithSoftmaxGradCPUKernel", ([&] { CrossEntropyWithSoftmaxGradCPUKernel(dev_ctx, label, softmax, loss_grad, soft_label, use_softmax, numeric_stable_mode, ignore_index, axis, logits_grad); })); } } } // namespace phi PD_REGISTER_KERNEL(cross_entropy_with_softmax_grad, CPU, ALL_LAYOUT, phi::CrossEntropyWithSoftmaxGradKernel, float, double) {}