// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "glog/logging.h" #include "gtest/gtest.h" #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/core/kernel_registry.h" PD_DECLARE_KERNEL(copy, CPU, ALL_LAYOUT); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_DECLARE_KERNEL(copy, GPU, ALL_LAYOUT); #endif namespace paddle { namespace tests { template experimental::Tensor InitCPUTensorForTest() { std::vector tensor_shape{5, 5}; auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape); auto* p_data_ptr = t1.mutable_data(paddle::PlaceType::kCPU); for (int64_t i = 0; i < t1.size(); i++) { p_data_ptr[i] = T(5); } return t1; } template void TestCopyTensor() { auto t1 = InitCPUTensorForTest(); auto t1_cpu_cp = t1.template copy_to(paddle::PlaceType::kCPU); CHECK((paddle::PlaceType::kCPU == t1_cpu_cp.place())); for (int64_t i = 0; i < t1.size(); i++) { CHECK_EQ(t1_cpu_cp.template mutable_data()[i], T(5)); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) VLOG(2) << "Do GPU copy test"; auto t1_gpu_cp = t1_cpu_cp.template copy_to(paddle::PlaceType::kGPU); CHECK((paddle::PlaceType::kGPU == t1_gpu_cp.place())); auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to(paddle::PlaceType::kGPU); CHECK((paddle::PlaceType::kGPU == t1_gpu_cp_cp.place())); auto t1_gpu_cp_cp_cpu = t1_gpu_cp_cp.template copy_to(paddle::PlaceType::kCPU); CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place())); for (int64_t i = 0; i < t1.size(); i++) { CHECK_EQ(t1_gpu_cp_cp_cpu.template mutable_data()[i], T(5)); } #endif } void TestAPIPlace() { std::vector tensor_shape = {5, 5}; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) auto t1 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape); t1.mutable_data(paddle::PlaceType::kGPU); CHECK((paddle::PlaceType::kGPU == t1.place())); #endif auto t2 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape); t2.mutable_data(paddle::PlaceType::kCPU); CHECK((paddle::PlaceType::kCPU == t2.place())); } void TestAPISizeAndShape() { std::vector tensor_shape = {5, 5}; auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape); CHECK_EQ(t1.size(), 25); CHECK(t1.shape() == tensor_shape); } void TestAPISlice() { std::vector tensor_shape_origin1 = {5, 5}; std::vector tensor_shape_sub1 = {3, 5}; std::vector tensor_shape_origin2 = {5, 5, 5}; std::vector tensor_shape_sub2 = {1, 5, 5}; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) auto t1 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin1); t1.mutable_data(paddle::PlaceType::kGPU); CHECK(t1.slice(0, 5).shape() == tensor_shape_origin1); CHECK(t1.slice(0, 3).shape() == tensor_shape_sub1); auto t2 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin2); t2.mutable_data(paddle::PlaceType::kGPU); CHECK(t2.slice(4, 5).shape() == tensor_shape_sub2); #endif auto t3 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin1); t3.mutable_data(paddle::PlaceType::kCPU); CHECK(t3.slice(0, 5).shape() == tensor_shape_origin1); CHECK(t3.slice(0, 3).shape() == tensor_shape_sub1); auto t4 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin2); t4.mutable_data(paddle::PlaceType::kCPU); CHECK(t4.slice(4, 5).shape() == tensor_shape_sub2); // Test writing function for sliced tensor auto t = InitCPUTensorForTest(); auto t_sliced = t.slice(0, 1); auto* t_sliced_data_ptr = t_sliced.mutable_data(paddle::PlaceType::kCPU); for (int64_t i = 0; i < t_sliced.size(); i++) { t_sliced_data_ptr[i] += static_cast(5); } auto* t_data_ptr = t.mutable_data(paddle::PlaceType::kCPU); for (int64_t i = 0; i < t_sliced.size(); i++) { CHECK_EQ(t_data_ptr[i], static_cast(10)); } } template paddle::DataType TestDtype() { std::vector tensor_shape = {5, 5}; auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape); t1.template mutable_data(paddle::PlaceType::kCPU); return t1.type(); } template void TestCast(paddle::DataType data_type) { std::vector tensor_shape = {5, 5}; auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape); t1.template mutable_data(paddle::PlaceType::kCPU); auto t2 = t1.cast(data_type); CHECK(t2.type() == data_type); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) auto tg1 = experimental::Tensor(paddle::PlaceType::kGPU); tg1.reshape(tensor_shape); tg1.template mutable_data(paddle::PlaceType::kGPU); auto tg2 = tg1.cast(data_type); CHECK(tg2.type() == data_type); #endif } void GroupTestCopy() { VLOG(2) << "Float cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "Double cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "int cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "int64 cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "int16 cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "int8 cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "uint8 cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "complex cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "complex cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); VLOG(2) << "Fp16 cpu-cpu-gpu-gpu-cpu"; TestCopyTensor(); } void GroupTestCast() { VLOG(2) << "int cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "int32 cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "int64 cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "double cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "bool cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "uint8 cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "float cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "complex cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "complex cast"; TestCast(paddle::DataType::FLOAT32); VLOG(2) << "float16 cast"; TestCast(paddle::DataType::FLOAT16); } void GroupTestDtype() { CHECK(TestDtype() == paddle::DataType::FLOAT32); CHECK(TestDtype() == paddle::DataType::FLOAT64); CHECK(TestDtype() == paddle::DataType::INT32); CHECK(TestDtype() == paddle::DataType::INT64); CHECK(TestDtype() == paddle::DataType::INT16); CHECK(TestDtype() == paddle::DataType::INT8); CHECK(TestDtype() == paddle::DataType::UINT8); CHECK(TestDtype() == paddle::DataType::COMPLEX64); CHECK(TestDtype() == paddle::DataType::COMPLEX128); CHECK(TestDtype() == paddle::DataType::FLOAT16); } void TestInitilized() { experimental::Tensor test_tensor(paddle::PlaceType::kCPU, {1, 1}); CHECK(test_tensor.is_initialized() == true); test_tensor.mutable_data(paddle::PlaceType::kCPU); CHECK(test_tensor.is_initialized() == true); float* tensor_data = test_tensor.mutable_data(); for (int i = 0; i < test_tensor.size(); i++) { tensor_data[i] = 0.5; } for (int i = 0; i < test_tensor.size(); i++) { CHECK(tensor_data[i] == 0.5); } } void TestJudgeTensorType() { experimental::Tensor test_tensor(paddle::PlaceType::kCPU, {1, 1}); CHECK(test_tensor.is_dense_tensor() == true); } TEST(PhiTensor, All) { VLOG(2) << "TestCopy"; GroupTestCopy(); VLOG(2) << "TestDtype"; GroupTestDtype(); VLOG(2) << "TestShape"; TestAPISizeAndShape(); VLOG(2) << "TestPlace"; TestAPIPlace(); VLOG(2) << "TestSlice"; TestAPISlice(); VLOG(2) << "TestCast"; GroupTestCast(); VLOG(2) << "TestInitilized"; TestInitilized(); VLOG(2) << "TestJudgeTensorType"; TestJudgeTensorType(); } } // namespace tests } // namespace paddle