# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci import paddle import paddle.nn.functional as F import paddle.fluid as fluid import paddle.fluid.core as core import paddle.tensor as tensor paddle.enable_static() @skip_check_grad_ci(reason="determinant grad is in progress.") class TestDeterminantOp(OpTest): def setUp(self): self.init_data() self.op_type = "determinant" self.outputs = {'Out': self.target} def test_check_output(self): self.check_output() def test_check_grad(self): pass def init_data(self): np.random.seed(0) self.case = np.random.rand(3, 3, 3, 3, 3).astype('float64') self.inputs = {'Input': self.case} self.target = np.linalg.det(self.case) class TestDeterminantOpCase1(TestDeterminantOp): def init_data(self): np.random.seed(0) self.case = np.random.rand(3, 3, 3, 3).astype(np.float32) self.inputs = {'Input': self.case} self.target = np.linalg.det(self.case) def test_check_grad(self): pass class TestDeterminantOpCase2(TestDeterminantOp): def init_data(self): np.random.seed(0) self.case = np.random.rand(4, 2, 4, 4).astype('float64') self.inputs = {'Input': self.case} self.target = np.linalg.det(self.case) def test_check_grad(self): pass class TestDeterminantAPI(unittest.TestCase): def setUp(self): self.shape = [3, 3, 3, 3] np.random.seed(0) self.x = np.random.rand(3, 3, 3, 3).astype(np.float32) self.place = paddle.CPUPlace() def test_api_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.shape) out = paddle.linalg.det(x) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x}, fetch_list=[out]) out_ref = np.linalg.det(self.x) for out in res: self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True) def test_api_dygraph(self): paddle.disable_static(self.place) x_tensor = paddle.to_tensor(self.x) out = paddle.linalg.det(x_tensor) out_ref = np.linalg.det(self.x) self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True) paddle.enable_static() @skip_check_grad_ci(reason="slogdeterminant grad is in progress.") class TestSlogDeterminantOp(OpTest): def setUp(self): self.op_type = "slogdeterminant" self.init_data() self.outputs = {'Out': self.target} def test_check_output(self): self.check_output() def test_check_grad(self): pass def init_data(self): np.random.seed(0) self.case = np.random.rand(3, 3, 3, 3).astype('float64') self.inputs = {'Input': self.case} self.target = np.array(np.linalg.slogdet(self.case)) class TestSlogDeterminantOpCase1(TestSlogDeterminantOp): def init_data(self): np.random.seed(0) self.case = np.random.rand(2, 2, 5, 5).astype(np.float32) self.inputs = {'Input': self.case} self.target = np.array(np.linalg.slogdet(self.case)) class TestSlogDeterminantAPI(unittest.TestCase): def setUp(self): self.shape = [3, 3, 3, 3] np.random.seed(0) self.x = np.random.rand(3, 3, 3, 3).astype(np.float32) self.place = paddle.CPUPlace() def test_api_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.shape) out = paddle.linalg.slogdet(x) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x}, fetch_list=[out]) out_ref = np.array(np.linalg.slogdet(self.x)) for out in res: self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True) def test_api_dygraph(self): paddle.disable_static(self.place) x_tensor = paddle.to_tensor(self.x) out = paddle.linalg.slogdet(x_tensor) out_ref = np.array(np.linalg.slogdet(self.x)) self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True) paddle.enable_static() if __name__ == '__main__': unittest.main()