# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import inspect from .. import core from ..framework import Variable, unique_name, static_only from .layer_function_generator import OpProtoHolder from paddle.base.dygraph.base import in_to_static_mode _supported_int_dtype_ = [ core.VarDesc.VarType.BOOL, core.VarDesc.VarType.UINT8, core.VarDesc.VarType.INT8, core.VarDesc.VarType.INT16, core.VarDesc.VarType.INT32, core.VarDesc.VarType.INT64, ] compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__'] EXPRESSION_MAP = { "__add__": "A + B", "__radd__": "A += B", "__sub__": "A - B", "__rsub__": "A -= B", "__mul__": "A * B", "__rmul__": "A *= B", "__div__": "A / B", "__truediv__": "A / B", "__rdiv__": "A /= B", "__rtruediv__": "A /= B", "__pow__": "A ** B", "__rpow__": "A **= B", "__floordiv__": "A //B", "__mod__": "A % B", "__matmul__": "A @ B", "__eq__": "A == B", "__ne__": "A != B", "__lt__": "A < B", "__le__": "A <= B", "__gt__": "A > B", "__ge__": "A >= B", } _already_patch_variable = False def monkey_patch_variable(): def unique_tmp_name(): return unique_name.generate("tmp") def safe_get_dtype(var): try: dtype = var.dtype except: raise ValueError("Cannot get data type from %s", var.name) return dtype def current_block(var): return var.block.program.current_block() def create_new_tmp_var(block, dtype): tmp_name = unique_tmp_name() return block.create_var(name=tmp_name, dtype=dtype) def create_new_tmp_sparse_var(block, dtype, type): tmp_name = unique_tmp_name() return block.create_var(name=tmp_name, dtype=dtype, type=type) def create_tensor(block, value, dtype, shape): value = float(value) var = create_new_tmp_var(block, dtype) block.append_op( type="fill_constant", outputs={'Out': [var]}, attrs={ 'dtype': var.dtype, 'shape': shape, 'value': value, 'force_cpu': False, }, stop_gradient=True, ) var.stop_gradient = True return var def create_scalar(block, value, dtype): return create_tensor(block, value, dtype, shape=[]) def create_tensor_with_batchsize(ref_var, value, dtype): assert isinstance(ref_var, Variable) value = float(value) block = current_block(ref_var) var = create_new_tmp_var(block, dtype) batch_dim = -1 out_shape = [] for i, d in enumerate(ref_var.shape): if d < 0: if batch_dim < 0: batch_dim = i out_shape.append(d) else: out_shape.append(1) else: out_shape.append(d) assert batch_dim != -1 block.append_op( type='fill_constant_batch_size_like', outputs={'Out': [var]}, inputs={'Input': [ref_var]}, attrs={ 'shape': out_shape, 'value': value, 'input_dim_idx': batch_dim, 'output_dim_idx': batch_dim, }, stop_gradient=True, ) var.stop_gradient = True return var @static_only def cpu(self): """ In dy2static, Variable also needs cpu() and cuda() interface. But, the underneath operator has only forward op but not backward one. Returns: The tensor which has copied to cpu place. Examples: In Static Graph Mode: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name="x", shape=[2,2], dtype='float32') y = x.cpu() """ block = current_block(self) tmp_name = unique_tmp_name() output = block.create_var( name=tmp_name, dtype=self.dtype, shape=self.shape, type=self.type, persistable=False, stop_gradient=True, ) # 0 means cpu place, see paddle/phi/kernels/memcpy_kernel.cc attrs = {'dst_place_type': 0} block.append_op( type='memcpy', inputs={'X': [self]}, outputs={'Out': [output]}, attrs=attrs, ) return output @static_only def cuda(self, device_id=None, blocking=True): """ In dy2static, Variable also needs cpu() and cuda() interface. But, the underneath operator has only forward op but not backward one. Args: self(Variable): The variable itself. device_id(int, optional): The destination GPU device id. Default: None, means current device. We add this argument for dy2static translation, please do not use it. blocking(bool, optional): Whether blocking or not, Default: True. We add this argument for dy2static translation, please do not use it. Returns: The tensor which has copied to cuda place. Examples: In Static Graph Mode: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name="x", shape=[2,2], dtype='float32') y = x.cpu() z = y.cuda() """ if device_id is not None: warnings.warn("device_id is not supported, and it will be ignored.") if blocking is not True: warnings.warn("blocking is not supported, and it will be ignored.") block = current_block(self) tmp_name = unique_tmp_name() output = block.create_var( name=tmp_name, dtype=self.dtype, shape=self.shape, type=self.type, persistable=False, stop_gradient=True, ) # 1 means cuda place, see paddle/phi/kernels/memcpy_kernel.cc attrs = {'dst_place_type': 1} block.append_op( type='memcpy', inputs={'X': [self]}, outputs={'Out': [output]}, attrs=attrs, ) return output @static_only def place(self): """ Variable don't have 'place' interface in static graph mode But this interface can greatly facilitate dy2static. So we give a warnning here and return None. """ warnings.warn( "Variable do not have 'place' interface for static graph mode, try not to use it. None will be returned." ) return None def astype(self, dtype): """ **Notes**: **The variable must be a** :ref:`api_base_Tensor` Cast a variable to a specified data type. Args: self(Variable): The source variable dtype: The target data type Returns: Variable: Variable with new dtype Examples: In Static Graph Mode: .. code-block:: python import paddle import paddle.base as base paddle.enable_static() startup_prog = base.Program() main_prog = base.Program() with base.program_guard(startup_prog, main_prog): original_variable = paddle.static.data(name = "new_variable", shape=[2,2], dtype='float32') new_variable = original_variable.astype('int64') print("new var's dtype is: {}".format(new_variable.dtype)) In Dygraph Mode: .. code-block:: python import paddle.base as base import numpy as np x = np.ones([2, 2], np.float32) with base.dygraph.guard(): original_variable = base.dygraph.to_variable(x) print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype)) new_variable = original_variable.astype('int64') print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype)) """ block = current_block(self) out = create_new_tmp_var(block, dtype) block.append_op( type="cast", inputs={"X": [self]}, outputs={"Out": [out]}, attrs={"in_dtype": self.dtype, "out_dtype": out.dtype}, ) out.stop_gradient = self.stop_gradient return out @static_only def append(self, var): """ **Notes**: **The type variable must be LoD Tensor Array. """ if not isinstance(var, Variable): if in_to_static_mode(): """in dy2static mode, x may be tensorable values such as int, float, np.array""" from paddle.tensor.creation import to_tensor var = to_tensor(var) else: raise TypeError( "Required input var should be Variable, but received {}".format( type(var) ) ) if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError( "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}".format( self.type ) ) from paddle.tensor.array import array_length, array_write array_write(x=var, i=array_length(self), array=self) @static_only def _item(self): """ In order to be compatible with the item interface introduced by the dynamic graph, it does nothing but returns self. It will check that the shape must be a 1-D tensor """ if len(self.shape) > 1: raise TypeError( "Required input var should be 1-D Variable, but received {}".format( self.shape ) ) return self @static_only def pop(self, *args): """ The type variable must be LoD Tensor Array. When self is LoDTensorArray, calling pop is similar to Python's pop on list. This interface is used to simplify dygraph to static graph operations. Args: self(Variable): The source variable, which must be LOD_TENSOR_ARRAY *args: optional, a int means index. Returns: Variable: self[index] """ from paddle.jit.dy2static.convert_operators import ( _run_paddle_pop, ) if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError( "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}".format( self.type ) ) return _run_paddle_pop(self, *args) def _scalar_op_(var, scale, bias): block = current_block(var) out = create_new_tmp_var(block, var.dtype) block.append_op( type="scale", inputs={"X": [var]}, outputs={"Out": [out]}, attrs={"scale": scale, "bias": bias}, ) return out def _neg_(var): return _scalar_op_(var, -1.0, 0.0) @property def _ndim_(self): """ Returns the dimension of current Variable Returns: the dimension Examples: .. code-block:: python import paddle paddle.enable_static() # create a static Variable x = paddle.static.data(name='x', shape=[3, 2, 1]) # print the dimension of the Variable print(x.ndim) """ return len(self.shape) def ndimension(self): """ Returns the dimension of current Variable Returns: the dimension Examples: .. code-block:: python import paddle paddle.enable_static() # create a static Variable x = paddle.static.data(name='x', shape=[3, 2, 1]) # print the dimension of the Variable print(x.ndimension) """ return len(self.shape) def dim(self): """ Returns the dimension of current Variable Returns: the dimension Examples: .. code-block:: python import paddle paddle.enable_static() # create a static Variable x = paddle.static.data(name='x', shape=[3, 2, 1]) # print the dimension of the Variable print(x.dim) """ return len(self.shape) def _scalar_add_(var, value): return _scalar_op_(var, 1.0, value) def _scalar_sub_(var, value): return _scalar_op_(var, 1.0, -value) def _scalar_rsub_(var, value): return _scalar_op_(var, -1.0, value) def _scalar_mul_(var, value): return _scalar_op_(var, value, 0.0) def _scalar_div_(var, value): return _scalar_op_(var, 1.0 / value, 0.0) def _binary_creator_( method_name, op_type, reverse=False, scalar_method=None ): def __impl__(self, other_var): # 1. scalar exists cases # we need combine the tensor.dtype and scalar.dtype, cast correct object if isinstance(other_var, float): # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float if self.dtype in _supported_int_dtype_: self = astype(self, 'float32') # here use `scale` replace `elementwise` to get better performance # but only +, -, *, / can use this method if scalar_method is not None: return scalar_method(self, other_var) elif isinstance(other_var, int): # in all cases(+, -, *, /, **, //, %), we can cast it to float # because the output tensor.dtype depend on the type of input tensor other_var = float(other_var) # division is a special case # NOTE(chenweihang): because we cast tensor to float32 instead float64, # the division result can only guarantee the numerical accuracy of 6 digits # after the decimal point. The result of numpy calculation is of float64 type, # so the calculation result here and the calculation result of numpy are # different after 6 decimal point. If necessary, we can also use float64 here. # torch's behavior here is consistent with ours if ( op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_ ): self = astype(self, 'float32') # here use `scale` replace `elementwise` to get better performance # but only +, -, *, / can use this method if scalar_method is not None: return scalar_method(self, other_var) else: # do nothing pass # 2. create variable for scalar lhs_dtype = safe_get_dtype(self) if not isinstance(other_var, Variable): if reverse: for elem in self.shape: if elem < 0: other_var = create_tensor_with_batchsize( self, other_var, lhs_dtype ) break else: # when break is not triggered, enter the else branch other_var = create_tensor( current_block(self), other_var, dtype=lhs_dtype, shape=self.shape, ) else: # add fill_op to current_block other_var = create_scalar( current_block(self), value=other_var, dtype=lhs_dtype ) # 3. unify right var type to left var rhs_dtype = safe_get_dtype(other_var) if lhs_dtype != rhs_dtype: other_var = astype(other_var, lhs_dtype) if reverse: tmp = self self = other_var other_var = tmp if ( op_type == "divide" or op_type == "elementwise_div" ) and self.dtype in _supported_int_dtype_: self = astype(self, 'float32') other_var = astype(other_var, 'float32') # NOTE(zhiqiu): the output of compare operator should be bool. if method_name in compare_ops: out = create_new_tmp_var(current_block(self), dtype="bool") else: out = create_new_tmp_var( current_block(self), dtype=safe_get_dtype(self) ) axis = -1 if other_var.ndim > 0 and other_var.shape[0] == -1: stack = inspect.stack()[1] file_name = stack[1] line_num = stack[2] warnings.warn( "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. " "If your code works well in the older versions but crashes in this version, try to use " "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future." % ( file_name, line_num, EXPRESSION_MAP[method_name], op_type, op_type, EXPRESSION_MAP[method_name], ), category=DeprecationWarning, ) current_block(self).append_op( type=op_type, inputs={'X': [self], 'Y': [other_var]}, outputs={'Out': out}, attrs={'axis': axis}, ) return out comment = OpProtoHolder.instance().get_op_proto(op_type).comment __impl__.__doc__ = """ {0} Args: self(Variable): left hand variable other_var(Variable|float|int): right hand variable Returns: Variable """.format( comment ) __impl__.__name__ = method_name return __impl__ def values(var): block = current_block(var) out = create_new_tmp_var(block, var.dtype) block.append_op( type="sparse_values", inputs={"x": [var]}, outputs={"out": [out]}, attrs={}, ) return out def indices(var): block = current_block(var) out = create_new_tmp_var(block, var.dtype) block.append_op( type="sparse_indices", inputs={"x": [var]}, outputs={"out": [out]}, attrs={}, ) return out def to_dense(var): block = current_block(var) out = create_new_tmp_var(block, var.dtype) block.append_op( type="sparse_to_dense", inputs={"x": [var]}, outputs={"out": [out]}, attrs={}, ) return out variable_methods = [ # b=-a ('__neg__', _neg_), ('astype', astype), ('cpu', cpu), ('cuda', cuda), ('place', place), ('append', append), ('item', _item), ('pop', pop), ('dim', dim), ('ndimension', ndimension), ('ndim', _ndim_), ( '__add__', _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_), ), # a+b == b+a. Do not need to reverse explicitly ( '__radd__', _binary_creator_( '__radd__', 'elementwise_add', False, _scalar_add_ ), ), ( '__sub__', _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_), ), ( '__rsub__', _binary_creator_( '__rsub__', 'elementwise_sub', True, _scalar_rsub_ ), ), ( '__mul__', _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_), ), # a*b == b*a. Do not need to reverse explicitly ( '__rmul__', _binary_creator_( '__rmul__', 'elementwise_mul', False, _scalar_mul_ ), ), ( '__div__', _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_), ), ( '__truediv__', _binary_creator_( '__truediv__', 'elementwise_div', False, _scalar_div_ ), ), ( '__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True, None), ), ( '__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div', True, None), ), ( '__pow__', _binary_creator_('__pow__', 'elementwise_pow', False, None), ), ( '__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True, None), ), ( '__floordiv__', _binary_creator_( '__floordiv__', 'elementwise_floordiv', False, None ), ), ( '__mod__', _binary_creator_('__mod__', 'elementwise_mod', False, None), ), ( '__matmul__', _binary_creator_('__matmul__', "matmul_v2", False, None), ), # for logical compare ('__eq__', _binary_creator_('__eq__', 'equal', False, None)), ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)), ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)), ('__le__', _binary_creator_('__le__', 'less_equal', False, None)), ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)), ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)), ('values', values), ('indices', indices), ('to_dense', to_dense), ] global _already_patch_variable if not _already_patch_variable: for method in variable_methods: method_name = method[0] method_impl = method[1] setattr(Variable, method_name, method_impl) else: import paddle.tensor for method_name in paddle.tensor.tensor_method_func: if hasattr(Variable, method_name): continue method_impl = getattr(paddle.tensor, method_name, None) if method_impl: setattr(Variable, method_name, method_impl) for magic_method, origin_method in paddle.tensor.magic_method_func: impl = getattr(paddle.tensor, origin_method, None) if impl: setattr(Variable, magic_method, impl) _already_patch_variable = True