# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from paddle.fluid.framework import default_main_program from paddle.incubate.fleet.parameter_server.ir.pserver_pass import ( _get_optimizer_input_shape, ) main_program = default_main_program() class TestFleetPS(unittest.TestCase): def test_version(self): from paddle.incubate.fleet.parameter_server import version transpiler = version.is_transpiler() self.assertEqual(transpiler, True) def test_optimizer_shape(self): optimizers = [] optimizers.append(("adam", "Moment1", [100, 1], [50, 1])) optimizers.append(("adam", "Moment2", [100, 1], [50, 1])) optimizers.append(("adagrad", "Moment", [100, 1], [50, 1])) optimizers.append(("adamax", "Moment", [100, 1], [50, 1])) optimizers.append(("adamax", "InfNorm", [100, 1], [50, 1])) optimizers.append(("momentum", "Velocity", [100, 1], [50, 1])) optimizers.append(("lars_momentum", "Velocity", [100, 1], [50, 1])) optimizers.append(("decayed_adagrad", "Moment", [100, 1], [50, 1])) optimizers.append(("rmsprop", "Moment", [100, 1], [50, 1])) optimizers.append(("rmsprop", "MeanSquare", [100, 1], [50, 1])) optimizers.append(("ftrl", "SquaredAccumulator", [100, 1], [50, 1])) optimizers.append(("ftrl", "LinearAccumulator", [100, 1], [50, 1])) for attrs in optimizers: op_type, varkey, orig_shape, param_shape = attrs new_shape = _get_optimizer_input_shape( op_type, varkey, orig_shape, param_shape ) self.assertListEqual(new_shape, param_shape) optimizers = [] optimizers.append(("sgd", "", [100, 1], [50, 1])) for attrs in optimizers: op_type, varkey, orig_shape, param_shape = attrs new_shape = _get_optimizer_input_shape( op_type, varkey, orig_shape, param_shape ) self.assertListEqual(new_shape, orig_shape) with self.assertRaises(ValueError): optimizers = [] optimizers.append(("new_opti", "", [100, 1], [50, 1])) for attrs in optimizers: op_type, varkey, orig_shape, param_shape = attrs _get_optimizer_input_shape( op_type, varkey, orig_shape, param_shape ) if __name__ == '__main__': unittest.main()