/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Copyright (c) 2022 NVIDIA Corporation. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "glog/logging.h" #include "paddle/phi/backends/dynload/cudnn_frontend.h" #include "paddle/phi/backends/gpu/cuda/cudnn_desc.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/utils/data_type.h" #include "paddle/phi/kernels/autotune/cache.h" #include "paddle/phi/kernels/autotune/switch_autotune.h" #include "paddle/phi/kernels/gpudnn/conv_gpudnn_base.h" namespace phi { class CudnnFrontendConvHelper { public: static bool IsNonDeterministic(cudnnBackendDescriptor_t engine_config) { return cudnn_frontend::hasNumericalNote< CUDNN_NUMERICAL_NOTE_NONDETERMINISTIC>(engine_config); } static bool AllowAll(cudnnBackendDescriptor_t engine_config) { (void)engine_config; return false; } static uint8_t GetAlignment(const phi::DenseTensor* tensor) { // alignment are in bytes uint8_t alignment = 1; uint64_t address = reinterpret_cast(tensor->data()); while (address % alignment == 0 && alignment < 16) alignment *= 2; return alignment; } static std::vector GetInt64Array(const std::vector& in_array) { std::vector out_array(in_array.size()); for (int i = 0; i < in_array.size(); i++) { out_array[i] = static_cast(in_array[i]); } return out_array; } static std::vector GenerateStrides( const std::vector& dim, cudnnTensorFormat_t filter_format) { // ref: // https://github.com/NVIDIA/cudnn-frontend/blob/main/samples/helpers.cpp // For INT8x4 and INT8x32 we still compute standard strides here to input // into the cuDNN functions. We will manually scale by resizeFactor in the // cpu ref. size_t nb_dims = dim.size(); std::vector stride(nb_dims); if (filter_format == CUDNN_TENSOR_NCHW) { stride[nb_dims - 1] = 1; for (int64_t d = nb_dims - 2; d >= 0; d--) { stride[d] = stride[d + 1] * dim[d + 1]; } } else { // Here we assume that the format is CUDNN_TENSOR_NHWC stride[1] = 1; stride[nb_dims - 1] = stride[1] * dim[1]; for (int64_t d = nb_dims - 2; d >= 2; d--) { stride[d] = stride[d + 1] * dim[d + 1]; } stride[0] = stride[2] * dim[2]; } return stride; } static cudnn_frontend::Tensor GetTensorDescriptor( const phi::DenseTensor* tensor, int64_t id, cudnnTensorFormat_t layout_format) { auto transformed_dims = phi::vectorize(tensor->dims()); if (layout_format == CUDNN_TENSOR_NHWC) { transformed_dims = phi::backends::gpu::TransformDimOrder(transformed_dims); } std::vector strides = GenerateStrides(transformed_dims, layout_format); return cudnn_frontend::TensorBuilder() .setDim(transformed_dims.size(), transformed_dims.data()) .setStrides(strides.size(), strides.data()) .setId(id) .setAlignment(GetAlignment(tensor)) .setDataType(phi::backends::gpu::ToCudnnDataType(tensor->dtype())) .build(); } static inline cudnn_frontend::Tensor GetGeneralTensorDescriptor( std::vector dims, cudnnTensorFormat_t layout, int64_t id, int64_t alignment, cudnnDataType_t dtype, bool is_virtual = false, int64_t group_count = 0) { std::vector strides = GenerateStrides(dims, layout); if (group_count > 0) { int64_t c_per_group = dims[1]; int64_t c_stride = strides[1]; dims.insert(dims.begin() + 1, group_count); strides.insert(strides.begin() + 1, c_stride * c_per_group); } cudnn_frontend::TensorBuilder builder; builder.setDim(dims.size(), dims.data()) .setStride(strides.size(), strides.data()) .setId(id) .setAlignment(alignment) .setDataType(dtype); if (is_virtual) { builder.setVirtual(); } return builder.build(); } static cudnn_frontend::ConvDesc_v8 GetConvDescriptor( cudnnDataType_t dataType, const std::vector& padding, const std::vector& stride, const std::vector& dilation) { uint64_t conv_dim = stride.size(); cudnnDataType_t compute_type = (dataType == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT; std::vector padding_int64 = GetInt64Array(padding); std::vector stride_int64 = GetInt64Array(stride); std::vector dilation_int64 = GetInt64Array(dilation); return cudnn_frontend::ConvDescBuilder() .setDataType(compute_type) .setMathMode(CUDNN_CROSS_CORRELATION) .setNDims(conv_dim) .setStrides(conv_dim, stride_int64.data()) .setPrePadding(conv_dim, padding_int64.data()) .setPostPadding(conv_dim, padding_int64.data()) .setDilation(conv_dim, dilation_int64.data()) .build(); } template static cudnn_frontend::OperationGraph BuildConvOperationGraph( const phi::DenseTensor* x_tensor, const phi::DenseTensor* y_tensor, const phi::DenseTensor* w_tensor, cudnnTensorFormat_t layout_format, const std::vector& strides, const std::vector& padding_common, const std::vector& dilations, cudnnDataType_t dtype, cudnnHandle_t handle, float alpha, float beta) { auto op = cudnn_frontend::OperationBuilder(op_mode) .setxDesc(GetTensorDescriptor(x_tensor, 'x', layout_format)) .setyDesc(GetTensorDescriptor(y_tensor, 'y', layout_format)) .setwDesc(GetTensorDescriptor(w_tensor, 'w', layout_format)) .setcDesc(GetConvDescriptor( dtype, padding_common, strides, dilations)) .setAlpha(alpha) .setBeta(beta) .build(); std::array ops = {&op}; return cudnn_frontend::OperationGraphBuilder() .setHandle(handle) .setOperationGraph(1, ops.data()) .build(); } static cudnn_frontend::executionPlans_t FindExecutionPlans( cudnn_frontend::OperationGraph* op_graph_pointer, bool exhaustive_search, bool deterministic, std::vector* data_ptrs, std::vector* uids, cudnnHandle_t handle, phi::DnnWorkspaceHandle* workspace_handle) { auto heurgen_method = [=](cudnn_frontend::OperationGraph& op_graph_) -> cudnn_frontend::EngineConfigList { cudnn_frontend::EngineConfigList filtered_configs; auto statuses = cudnn_frontend::get_heuristics_list<2>( {"heuristics_instant", "heuristics_fallback"}, op_graph_, deterministic ? IsNonDeterministic : AllowAll, filtered_configs, true); VLOG(6) << "Filter config list has " << filtered_configs.size() << " configurations "; return filtered_configs; }; std::array sources = { heurgen_method}; cudnn_frontend::EngineConfigGenerator generator(sources.size(), sources.data()); size_t workspace_size_limit = CalcWorkspaceLimitInBytes(UseFixedWorkspace()); auto predicate_function = [=](cudnn_frontend::ExecutionPlan const& plan) -> bool { return plan.getWorkspaceSize() > workspace_size_limit; }; VLOG(6) << "[cudnn_frontend] Max workspace size: " << workspace_size_limit; cudnn_frontend::executionPlans_t plans; bool use_autotune = phi::autotune::AutoTuneStatus::Instance().UseAutoTune(); if (!deterministic && (exhaustive_search || use_autotune)) { workspace_handle->RunFunc( [&](void* workspace_ptr) { auto variant_pack = cudnn_frontend::VariantPackBuilder() .setWorkspacePointer(workspace_ptr) .setDataPointers(data_ptrs->size(), data_ptrs->data()) .setUids(uids->size(), uids->data()) .build(); plans = generator .cudnnFindPlan( handle, *op_graph_pointer, variant_pack, predicate_function); }, workspace_size_limit); } else { plans = generator.cudnnGetPlan(handle, *op_graph_pointer, predicate_function); } std::for_each( plans.begin(), plans.end(), [](cudnn_frontend::ExecutionPlan& opt) { VLOG(6) << "Plan tag: " << opt.getTag() << " finished in " << opt.getExecutionTime() << " ms," << " workspace: " << opt.getWorkspaceSize() << " bytes"; }); return plans; } static cudnn_frontend::executionPlans_t FindExecutionPlans( cudnn_frontend::OperationGraph* op_graph_pointer, bool exhaustive_search, bool deterministic, void* x_data, void* y_data, void* w_data, cudnnHandle_t handle, phi::DnnWorkspaceHandle* workspace_handle) { std::vector data_ptrs({x_data, y_data, w_data}); std::vector uids({'x', 'y', 'w'}); return FindExecutionPlans(op_graph_pointer, exhaustive_search, deterministic, &data_ptrs, &uids, handle, workspace_handle); } static void ExecutePlan(cudnnHandle_t handle_, phi::DnnWorkspaceHandle* workspace_handle, std::vector* data_ptrs, std::vector* uids, cudnnBackendDescriptor_t plan_desc, int64_t workspace_size) { workspace_handle->RunFunc( [&](void* workspace_ptr) { auto variant_pack = cudnn_frontend::VariantPackBuilder() .setWorkspacePointer(workspace_ptr) .setDataPointers(data_ptrs->size(), data_ptrs->data()) .setUids(uids->size(), uids->data()) .build(); PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnBackendExecute( handle_, plan_desc, variant_pack.get_raw_desc())); }, workspace_size); } static void ExecutePlan(cudnnHandle_t handle_, phi::DnnWorkspaceHandle* workspace_handle, void* x_data, void* y_data, void* w_data, cudnnBackendDescriptor_t plan_desc, int64_t workspace_size) { std::vector data_ptrs({x_data, y_data, w_data}); std::vector uids({'x', 'y', 'w'}); ExecutePlan(handle_, workspace_handle, &data_ptrs, &uids, plan_desc, workspace_size); } static void ExecutePlansAndCache( cudnnHandle_t handle_, phi::DnnWorkspaceHandle* workspace_handle, std::vector* data_ptrs, std::vector* uids, cudnn_frontend::executionPlans_t* plans, bool exhaustive_search, const cudnn_frontend::feature_vector_t& feature_vector, phi::autotune::CudnnFrontendPlanCache* plan_cache) { for (auto& plan : *plans) { try { ExecutePlan(handle_, workspace_handle, data_ptrs, uids, plan.get_raw_desc(), plan.getWorkspaceSize()); if (!exhaustive_search || plan_cache->IsStable(feature_vector, plan.getTag(), handle_)) { plan_cache->InsertPlan(feature_vector, plan, handle_); } return; } catch (cudnn_frontend::cudnnException& e) { VLOG(4) << "Plan " << plan.describe() << "failed to execute. Trying next plan."; } catch (phi::enforce::EnforceNotMet& e) { VLOG(4) << "Plan " << plan.describe() << "failed to execute. Trying next plan."; } } PADDLE_THROW(phi::errors::InvalidArgument( "[CUDNN Frontend API] No valid plan could " "be found to execute. Try setting FLAGS_conv_workspace_size_limit " "higher.")); } static void ExecutePlansAndCache( cudnnHandle_t handle_, phi::DnnWorkspaceHandle* workspace_handle, void* x_data, void* y_data, void* w_data, cudnn_frontend::executionPlans_t* plans, bool exhaustive_search, const cudnn_frontend::OperationGraph& op_graph, phi::autotune::CudnnFrontendPlanCache* plan_cache) { std::vector data_ptrs({x_data, y_data, w_data}); std::vector uids({'x', 'y', 'w'}); ExecutePlansAndCache(handle_, workspace_handle, &data_ptrs, &uids, plans, exhaustive_search, op_graph.getFeatureVector(), plan_cache); } static cudnn_frontend::Operation MakePointwiseOp( cudnnPointwiseMode_t mode, cudnnDataType_t dtype, cudnn_frontend::Tensor const& x_desc, cudnn_frontend::Tensor const& b_desc, cudnn_frontend::Tensor const& y_desc, float alpha1 = 1.0, float alpha2 = 1.0) { auto op_desc = cudnn_frontend::PointWiseDescBuilder() .setMode(mode) .setComputeType(dtype) .build(); auto op = cudnn_frontend::OperationBuilder( CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR) .setxDesc(x_desc) .setbDesc(b_desc) .setyDesc(y_desc) .setpwDesc(op_desc) .setAlpha(alpha1) .setAlpha2(alpha2) .build(); VLOG(6) << op.describe(); return op; } }; // class CudnnFrontendConvHelper template void CudnnConvBwdDataV8(const DenseTensor* dy_tensor, const DenseTensor* w_tensor, cudnnHandle_t handle, DnnWorkspaceHandle* workspace_handle, const std::vector& strides, const std::vector& padding_common, const std::vector& dilations, cudnnDataType_t dtype, cudnnTensorFormat_t layout_format, bool use_addto, bool exhaustive_search, bool deterministic, DenseTensor* dx_tensor) { auto& plan_cache_bwd_data = phi::autotune::AutoTuneCache::Instance().GetConvV8( phi::autotune::AlgorithmType::kConvBackwardDataV8); T* dy_tensor_data = const_cast(dy_tensor->data()); T* w_tensor_data = const_cast(w_tensor->data()); T* dx_tensor_data = dx_tensor->data(); float alpha = 1.0f; float beta = use_addto ? 1.0f : 0.0f; using helper = CudnnFrontendConvHelper; auto op_graph = helper::BuildConvOperationGraph< CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR>( dx_tensor, dy_tensor, w_tensor, layout_format, strides, padding_common, dilations, dtype, handle, alpha, beta); if (plan_cache_bwd_data.FindPlan(op_graph, handle)) { const cudnn_frontend::ExecutionPlan* cached_plan = nullptr; int64_t workspace_size = 0; plan_cache_bwd_data.GetPlan( op_graph, &cached_plan, &workspace_size, handle); helper::ExecutePlan(handle, workspace_handle, dx_tensor_data, dy_tensor_data, w_tensor_data, cached_plan->get_raw_desc(), workspace_size); return; } auto plans = helper::FindExecutionPlans(&op_graph, exhaustive_search, deterministic, dx_tensor_data, dy_tensor_data, w_tensor_data, handle, workspace_handle); helper::ExecutePlansAndCache(handle, workspace_handle, dx_tensor_data, dy_tensor_data, w_tensor_data, &plans, exhaustive_search, op_graph, &plan_cache_bwd_data); } template void CudnnConvBwdFilterV8(const DenseTensor* x_tensor, const DenseTensor* dy_tensor, cudnnHandle_t handle, DnnWorkspaceHandle* workspace_handle, const std::vector& strides, const std::vector& padding_common, const std::vector& dilations, cudnnDataType_t dtype, cudnnTensorFormat_t layout_format, bool use_addto, bool exhaustive_search, bool deterministic, DenseTensor* dw_tensor) { auto& plan_cache_bwd_filter = phi::autotune::AutoTuneCache::Instance().GetConvV8( phi::autotune::AlgorithmType::kConvBackwardFilterV8); T* x_tensor_data = const_cast(x_tensor->data()); T* dy_tensor_data = const_cast(dy_tensor->data()); T* dw_tensor_data = dw_tensor->data(); float alpha = 1.0f; float beta = 0.0f; using helper = CudnnFrontendConvHelper; auto op_graph = helper::BuildConvOperationGraph< CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR>( x_tensor, dy_tensor, dw_tensor, layout_format, strides, padding_common, dilations, dtype, handle, alpha, beta); if (plan_cache_bwd_filter.FindPlan(op_graph, handle)) { const cudnn_frontend::ExecutionPlan* cached_plan = nullptr; int64_t workspace_size = 0; plan_cache_bwd_filter.GetPlan( op_graph, &cached_plan, &workspace_size, handle); helper::ExecutePlan(handle, workspace_handle, x_tensor_data, dy_tensor_data, dw_tensor_data, cached_plan->get_raw_desc(), workspace_size); return; } auto plans = helper::FindExecutionPlans(&op_graph, exhaustive_search, deterministic, x_tensor_data, dy_tensor_data, dw_tensor_data, handle, workspace_handle); helper::ExecutePlansAndCache(handle, workspace_handle, x_tensor_data, dy_tensor_data, dw_tensor_data, &plans, exhaustive_search, op_graph, &plan_cache_bwd_filter); } } // namespace phi