# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import abc import numpy as np from ..fluid.data_feeder import check_variable_and_dtype from ..fluid.layer_helper import LayerHelper from ..fluid.layers.nn import topk from ..fluid.framework import core, _varbase_creator, in_dygraph_mode import paddle __all__ = ['Metric', 'Accuracy', 'Precision', 'Recall', 'Auc', 'accuracy'] def _is_numpy_(var): return isinstance(var, (np.ndarray, np.generic)) @six.add_metaclass(abc.ABCMeta) class Metric(object): """ Base class for metric, encapsulates metric logic and APIs Usage: m = SomeMetric() for prediction, label in ...: m.update(prediction, label) m.accumulate() Advanced usage for :code:`compute`: Metric calculation can be accelerated by calculating metric states from model outputs and labels by build-in operators not by Python/NumPy in :code:`compute`, metric states will be fetched as NumPy array and call :code:`update` with states in NumPy format. Metric calculated as follows (operations in Model and Metric are indicated with curly brackets, while data nodes not): inputs & labels || ------------------ | || {model} || | || outputs & labels || | || tensor data {Metric.compute} || | || metric states(tensor) || | || {fetch as numpy} || ------------------ | || metric states(numpy) || numpy data | || {Metric.update} \/ ------------------ Examples: For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label` as inputs, we can calculate the correct prediction matrix between :code:`pred` and :code:`label` in :code:`compute`. For examples, prediction results contains 10 classes, while :code:`pred` shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size, and we only need to calculate accurary of top-1 and top-5, we could calculate the correct prediction matrix of the top-5 scores of the prediction of each sample like follows, while the correct prediction matrix shape is [N, 5]. .. code-block:: python def compute(pred, label): # sort prediction and slice the top-5 scores pred = paddle.argsort(pred, descending=True)[:, :5] # calculate whether the predictions are correct correct = pred == label return paddle.cast(correct, dtype='float32') With the :code:`compute`, we split some calculations to OPs (which may run on GPU devices, will be faster), and only fetch 1 tensor with shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1]. :code:`update` can be define as follows: .. code-block:: python def update(self, correct): accs = [] for i, k in enumerate(self.topk): num_corrects = correct[:, :k].sum() num_samples = len(correct) accs.append(float(num_corrects) / num_samples) self.total[i] += num_corrects self.count[i] += num_samples return accs """ def __init__(self): pass @abc.abstractmethod def reset(self): """ Reset states and result """ raise NotImplementedError("function 'reset' not implemented in {}.". format(self.__class__.__name__)) @abc.abstractmethod def update(self, *args): """ Update states for metric Inputs of :code:`update` is the outputs of :code:`Metric.compute`, if :code:`compute` is not defined, the inputs of :code:`update` will be flatten arguments of **output** of mode and **label** from data: :code:`update(output1, output2, ..., label1, label2,...)` see :code:`Metric.compute` """ raise NotImplementedError("function 'update' not implemented in {}.". format(self.__class__.__name__)) @abc.abstractmethod def accumulate(self): """ Accumulates statistics, computes and returns the metric value """ raise NotImplementedError( "function 'accumulate' not implemented in {}.".format( self.__class__.__name__)) @abc.abstractmethod def name(self): """ Returns metric name """ raise NotImplementedError("function 'name' not implemented in {}.". format(self.__class__.__name__)) def compute(self, *args): """ This API is advanced usage to accelerate metric calculating, calulations from outputs of model to the states which should be updated by Metric can be defined here, where Paddle OPs is also supported. Outputs of this API will be the inputs of "Metric.update". If :code:`compute` is defined, it will be called with **outputs** of model and **labels** from data as arguments, all outputs and labels will be concatenated and flatten and each filed as a separate argument as follows: :code:`compute(output1, output2, ..., label1, label2,...)` If :code:`compute` is not defined, default behaviour is to pass input to output, so output format will be: :code:`return output1, output2, ..., label1, label2,...` see :code:`Metric.update` """ return args class Accuracy(Metric): """ Encapsulates accuracy metric logic. Args: topk (int|tuple(int)): Number of top elements to look at for computing accuracy. Default is (1,). name (str, optional): String name of the metric instance. Default is `acc`. Example by standalone: .. code-block:: python import numpy as np import paddle x = paddle.to_tensor(np.array([ [0.1, 0.2, 0.3, 0.4], [0.1, 0.4, 0.3, 0.2], [0.1, 0.2, 0.4, 0.3], [0.1, 0.2, 0.3, 0.4]])) y = paddle.to_tensor(np.array([[0], [1], [2], [3]])) m = paddle.metric.Accuracy() correct = m.compute(x, y) m.update(correct) res = m.accumulate() print(res) # 0.75 Example with Model API: .. code-block:: python import paddle from paddle.static import InputSpec input = InputSpec([None, 1, 28, 28], 'float32', 'image') label = InputSpec([None, 1], 'int64', 'label') train_dataset = paddle.vision.datasets.MNIST(mode='train') model = paddle.Model(paddle.vision.LeNet(), input, label) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) model.fit(train_dataset, batch_size=64) """ def __init__(self, topk=(1, ), name=None, *args, **kwargs): super(Accuracy, self).__init__(*args, **kwargs) self.topk = topk self.maxk = max(topk) self._init_name(name) self.reset() def compute(self, pred, label, *args): """ Compute the top-k (maxinum value in `topk`) indices. Args: pred (Tensor): The predicted value is a Tensor wit type float32 or float64. label (Tensor): The ground truth value is a 2D Tensor, its shape is [batch_size, 1] and type is int64. Return: Tensor: Correct mask, a tensor with shape [batch_size, topk]. """ pred = paddle.argsort(pred, descending=True)[:, :self.maxk] label = paddle.reshape(label, (-1, 1)) correct = pred == label return paddle.cast(correct, dtype='float32') def update(self, correct, *args): """ Update the metrics states (correct count and total count), in order to calculate cumulative accuracy of all instances. This function also returns the accuracy of current step. Args: correct: Correct mask, a tensor with shape [batch_size, topk]. Return: Tensor: the accuracy of current step. """ if isinstance(correct, paddle.Tensor): correct = correct.numpy() accs = [] for i, k in enumerate(self.topk): num_corrects = correct[:, :k].sum() num_samples = len(correct) accs.append(float(num_corrects) / num_samples) self.total[i] += num_corrects self.count[i] += num_samples accs = accs[0] if len(self.topk) == 1 else accs return accs def reset(self): """ Resets all of the metric state. """ self.total = [0.] * len(self.topk) self.count = [0] * len(self.topk) def accumulate(self): """ Computes and returns the accumulated metric. """ res = [] for t, c in zip(self.total, self.count): r = float(t) / c if c > 0 else 0. res.append(r) res = res[0] if len(self.topk) == 1 else res return res def _init_name(self, name): name = name or 'acc' if self.maxk != 1: self._name = ['{}_top{}'.format(name, k) for k in self.topk] else: self._name = [name] def name(self): """ Return name of metric instance. """ return self._name class Precision(Metric): """ Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Refer to https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers Noted that this class manages the precision score only for binary classification task. Args: name (str, optional): String name of the metric instance. Default is `precision`. Example by standalone: .. code-block:: python import numpy as np import paddle x = np.array([0.1, 0.5, 0.6, 0.7]) y = np.array([0, 1, 1, 1]) m = paddle.metric.Precision() m.update(x, y) res = m.accumulate() print(res) # 1.0 Example with Model API: .. code-block:: python import numpy as np import paddle import paddle.nn as nn class Data(paddle.io.Dataset): def __init__(self): super(Data, self).__init__() self.n = 1024 self.x = np.random.randn(self.n, 10).astype('float32') self.y = np.random.randint(2, size=(self.n, 1)).astype('float32') def __getitem__(self, idx): return self.x[idx], self.y[idx] def __len__(self): return self.n paddle.disable_static() model = paddle.Model(nn.Sequential( nn.Linear(10, 1), nn.Sigmoid() )) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, loss=nn.BCELoss(), metrics=paddle.metric.Precision()) data = Data() model.fit(data, batch_size=16) """ def __init__(self, name='precision', *args, **kwargs): super(Precision, self).__init__(*args, **kwargs) self.tp = 0 # true positive self.fp = 0 # false positive self._name = name def update(self, preds, labels): """ Update the states based on the current mini-batch prediction results. Args: preds (numpy.ndarray): The prediction result, usually the output of two-class sigmoid function. It should be a vector (column vector or row vector) with data type: 'float64' or 'float32'. labels (numpy.ndarray): The ground truth (labels), the shape should keep the same as preds. The data type is 'int32' or 'int64'. """ if isinstance(preds, paddle.Tensor): preds = preds.numpy() elif not _is_numpy_(preds): raise ValueError("The 'preds' must be a numpy ndarray or Tensor.") if isinstance(labels, paddle.Tensor): labels = labels.numpy() elif not _is_numpy_(labels): raise ValueError("The 'labels' must be a numpy ndarray or Tensor.") sample_num = labels.shape[0] preds = np.floor(preds + 0.5).astype("int32") for i in range(sample_num): pred = preds[i] label = labels[i] if pred == 1: if pred == label: self.tp += 1 else: self.fp += 1 def reset(self): """ Resets all of the metric state. """ self.tp = 0 self.fp = 0 def accumulate(self): """ Calculate the final precision. Returns: A scaler float: results of the calculated precision. """ ap = self.tp + self.fp return float(self.tp) / ap if ap != 0 else .0 def name(self): """ Returns metric name """ return self._name class Recall(Metric): """ Recall (also known as sensitivity) is the fraction of relevant instances that have been retrieved over the total amount of relevant instances Refer to: https://en.wikipedia.org/wiki/Precision_and_recall Noted that this class manages the recall score only for binary classification task. Args: name (str, optional): String name of the metric instance. Default is `recall`. Example by standalone: .. code-block:: python import numpy as np import paddle x = np.array([0.1, 0.5, 0.6, 0.7]) y = np.array([1, 0, 1, 1]) m = paddle.metric.Recall() m.update(x, y) res = m.accumulate() print(res) # 2.0 / 3.0 Example with Model API: .. code-block:: python import numpy as np import paddle import paddle.nn as nn class Data(paddle.io.Dataset): def __init__(self): super(Data, self).__init__() self.n = 1024 self.x = np.random.randn(self.n, 10).astype('float32') self.y = np.random.randint(2, size=(self.n, 1)).astype('float32') def __getitem__(self, idx): return self.x[idx], self.y[idx] def __len__(self): return self.n paddle.disable_static() model = paddle.Model(nn.Sequential( nn.Linear(10, 1), nn.Sigmoid() )) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, loss=nn.BCELoss(), metrics=[paddle.metric.Precision(), paddle.metric.Recall()]) data = Data() model.fit(data, batch_size=16) """ def __init__(self, name='recall', *args, **kwargs): super(Recall, self).__init__(*args, **kwargs) self.tp = 0 # true positive self.fn = 0 # false negative self._name = name def update(self, preds, labels): """ Update the states based on the current mini-batch prediction results. Args: preds(numpy.array): prediction results of current mini-batch, the output of two-class sigmoid function. Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'. labels(numpy.array): ground truth (labels) of current mini-batch, the shape should keep the same as preds. Shape: [batch_size, 1], Dtype: 'int32' or 'int64'. """ if isinstance(preds, paddle.Tensor): preds = preds.numpy() elif not _is_numpy_(preds): raise ValueError("The 'preds' must be a numpy ndarray or Tensor.") if isinstance(labels, paddle.Tensor): labels = labels.numpy() elif not _is_numpy_(labels): raise ValueError("The 'labels' must be a numpy ndarray or Tensor.") sample_num = labels.shape[0] preds = np.rint(preds).astype("int32") for i in range(sample_num): pred = preds[i] label = labels[i] if label == 1: if pred == label: self.tp += 1 else: self.fn += 1 def accumulate(self): """ Calculate the final recall. Returns: A scaler float: results of the calculated Recall. """ recall = self.tp + self.fn return float(self.tp) / recall if recall != 0 else .0 def reset(self): """ Resets all of the metric state. """ self.tp = 0 self.fn = 0 def name(self): """ Returns metric name """ return self._name class Auc(Metric): """ The auc metric is for binary classification. Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve. Please notice that the auc metric is implemented with python, which may be a little bit slow. The `auc` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the AUC. To discretize the AUC curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area under the PR-curve is the computed using the height of the precision values by the recall. Args: curve (str): Specifies the mode of the curve to be computed, 'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'. num_thresholds (int): The number of thresholds to use when discretizing the roc curve. Default is 4095. 'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'. name (str, optional): String name of the metric instance. Default is `auc`. "NOTE: only implement the ROC curve type via Python now." Example by standalone: .. code-block:: python import numpy as np import paddle m = paddle.metric.Auc() n = 8 class0_preds = np.random.random(size = (n, 1)) class1_preds = 1 - class0_preds preds = np.concatenate((class0_preds, class1_preds), axis=1) labels = np.random.randint(2, size = (n, 1)) m.update(preds=preds, labels=labels) res = m.accumulate() Example with Model API: .. code-block:: python import numpy as np import paddle import paddle.nn as nn class Data(paddle.io.Dataset): def __init__(self): super(Data, self).__init__() self.n = 1024 self.x = np.random.randn(self.n, 10).astype('float32') self.y = np.random.randint(2, size=(self.n, 1)).astype('int64') def __getitem__(self, idx): return self.x[idx], self.y[idx] def __len__(self): return self.n paddle.disable_static() model = paddle.Model(nn.Sequential( nn.Linear(10, 2), nn.Softmax()) ) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) def loss(x, y): return nn.functional.nll_loss(paddle.log(x), y) model.prepare( optim, loss=loss, metrics=paddle.metric.Auc()) data = Data() model.fit(data, batch_size=16) """ def __init__(self, curve='ROC', num_thresholds=4095, name='auc', *args, **kwargs): super(Auc, self).__init__(*args, **kwargs) self._curve = curve self._num_thresholds = num_thresholds _num_pred_buckets = num_thresholds + 1 self._stat_pos = np.zeros(_num_pred_buckets) self._stat_neg = np.zeros(_num_pred_buckets) self._name = name def update(self, preds, labels): """ Update the auc curve with the given predictions and labels. Args: preds (numpy.array): An numpy array in the shape of (batch_size, 2), preds[i][j] denotes the probability of classifying the instance i into the class j. labels (numpy.array): an numpy array in the shape of (batch_size, 1), labels[i] is either o or 1, representing the label of the instance i. """ if isinstance(labels, paddle.Tensor): labels = labels.numpy() elif not _is_numpy_(labels): raise ValueError("The 'labels' must be a numpy ndarray or Tensor.") if isinstance(preds, paddle.Tensor): preds = preds.numpy() elif not _is_numpy_(preds): raise ValueError("The 'preds' must be a numpy ndarray or Tensor.") for i, lbl in enumerate(labels): value = preds[i, 1] bin_idx = int(value * self._num_thresholds) assert bin_idx <= self._num_thresholds if lbl: self._stat_pos[bin_idx] += 1.0 else: self._stat_neg[bin_idx] += 1.0 @staticmethod def trapezoid_area(x1, x2, y1, y2): return abs(x1 - x2) * (y1 + y2) / 2.0 def accumulate(self): """ Return the area (a float score) under auc curve Return: float: the area under auc curve """ tot_pos = 0.0 tot_neg = 0.0 auc = 0.0 idx = self._num_thresholds while idx >= 0: tot_pos_prev = tot_pos tot_neg_prev = tot_neg tot_pos += self._stat_pos[idx] tot_neg += self._stat_neg[idx] auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos, tot_pos_prev) idx -= 1 return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0 def reset(self): """ Reset states and result """ _num_pred_buckets = self._num_thresholds + 1 self._stat_pos = np.zeros(_num_pred_buckets) self._stat_neg = np.zeros(_num_pred_buckets) def name(self): """ Returns metric name """ return self._name def accuracy(input, label, k=1, correct=None, total=None, name=None): """ accuracy layer. Refer to the https://en.wikipedia.org/wiki/Precision_and_recall This function computes the accuracy using the input and label. If the correct label occurs in top k predictions, then correct will increment by one. Note: the dtype of accuracy is determined by input. the input and label dtype can be different. Args: input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64. The shape is ``[sample_number, class_dim]`` . label(Tensor): The label of dataset. Tensor with type int32,int64. The shape is ``[sample_number, 1]`` . k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32. correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32. total(Tensor, optional): The total entries count. A tensor with type int64 or int32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor, the correct rate. A Tensor with type float32. Examples: .. code-block:: python import paddle predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32') label = paddle.to_tensor([[2], [0]], dtype="int64") result = paddle.metric.accuracy(input=predictions, label=label, k=1) # [0.5] """ if in_dygraph_mode(): if correct is None: correct = _varbase_creator(dtype="int32") if total is None: total = _varbase_creator(dtype="int32") topk_out, topk_indices = topk(input, k=k) _acc, _, _ = core.ops.accuracy(topk_out, topk_indices, label, correct, total) return _acc helper = LayerHelper("accuracy", **locals()) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], 'accuracy') topk_out, topk_indices = topk(input, k=k) acc_out = helper.create_variable_for_type_inference(dtype="float32") if correct is None: correct = helper.create_variable_for_type_inference(dtype="int32") if total is None: total = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type="accuracy", inputs={ "Out": [topk_out], "Indices": [topk_indices], "Label": [label] }, outputs={ "Accuracy": [acc_out], "Correct": [correct], "Total": [total], }) return acc_out