// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/svd_op.h" #include #include #include #include #include "paddle/phi/core/ddim.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif namespace paddle { namespace operators { using DDim = framework::DDim; static DDim UDDim(const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 1] = k; return phi::make_ddim(x_vec); } static DDim VHDDim(const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 2] = k; return phi::make_ddim(x_vec); } static DDim SDDim(const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 2] = k; x_vec.erase(x_vec.end() - 1); // rank - 1 return phi::make_ddim(x_vec); } class SvdOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "svd"); OP_INOUT_CHECK(ctx->HasOutput("U"), "Output", "U", "svd"); OP_INOUT_CHECK(ctx->HasOutput("VH"), "Output", "VH", "svd"); OP_INOUT_CHECK(ctx->HasOutput("S"), "Output", "S", "svd"); auto in_dims = ctx->GetInputDim("X"); int x_rank = in_dims.size(); PADDLE_ENFORCE_GE(in_dims.size(), 2, platform::errors::InvalidArgument( "the rank of input must greater than 2")); int m = in_dims[x_rank - 2]; int n = in_dims[x_rank - 1]; int k = std::min(m, n); const bool full_uv = ctx->Attrs().Get("full_matrices"); ctx->SetOutputDim("U", !full_uv ? UDDim(in_dims, k) : UDDim(in_dims, m)); ctx->SetOutputDim("VH", !full_uv ? VHDDim(in_dims, k) : VHDDim(in_dims, n)); ctx->SetOutputDim("S", SDDim(in_dims, k)); ctx->ShareLoD("X", /*->*/ "U"); ctx->ShareLoD("X", /*->*/ "VH"); ctx->ShareLoD("X", /*->*/ "S"); } }; class SvdOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of svd op."); AddOutput("U", "(Tensor), The output U tensor of svd op."); AddOutput("S", "(Tensor), The output S tensor of svd op."); AddOutput("VH", "(Tensor), The output VH tensor of svd op."); AddAttr("full_matrices", "(bool, default false) Only Compute the thin U and V" "when set as True, the gradient have some random " "attribute.") .SetDefault(false); AddComment(R"DOC( Svd Operator. This operator is used to perform SVD operation for batched matrics $X$. $$U, S, VH = svd(X)$$ )DOC"); } }; class SvdGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("U")), "Input", "U@Grad", "SvdGrad"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("VH")), "Input", "VH@Grad", "SvdGrad"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("S")), "Input", "S@Grad", "SvdGrad"); OP_INOUT_CHECK(ctx->HasInput("U"), "Input", "U", "SvdGrad"); OP_INOUT_CHECK(ctx->HasInput("S"), "Input", "S", "SvdGrad"); OP_INOUT_CHECK(ctx->HasInput("VH"), "Input", "VH", "SvdGrad"); OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", "X@Grad", "SvdGrad"); auto d_x = ctx->GetInputDim(("X")); ctx->SetOutputDim(framework::GradVarName("X"), d_x); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(dtype, ctx.GetPlace()); } }; template class SvdGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr retv) const override { retv->SetType("svd_grad"); retv->SetInput(framework::GradVarName("U"), this->OutputGrad("U")); retv->SetInput(framework::GradVarName("VH"), this->OutputGrad("VH")); retv->SetInput(framework::GradVarName("S"), this->OutputGrad("S")); retv->SetInput("U", this->Output("U")); retv->SetInput("VH", this->Output("VH")); retv->SetInput("S", this->Output("S")); retv->SetInput("X", this->Input("X")); retv->SetAttrMap(this->Attrs()); retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(svd, ops::SvdOp, ops::SvdOpMaker, ops::SvdGradMaker, ops::SvdGradMaker); REGISTER_OPERATOR(svd_grad, ops::SvdGradOp); REGISTER_OP_CPU_KERNEL(svd, ops::SvdCPUKernel, ops::SvdCPUKernel); REGISTER_OP_CPU_KERNEL(svd_grad, ops::SvdGradKernel, ops::SvdGradKernel);