/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/fluid/operators/fold_op.h" namespace paddle { namespace operators { class FoldOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ( ctx->HasInput("X"), true, platform::errors::NotFound("Input(X) of FoldOp should not be null")); PADDLE_ENFORCE_EQ( ctx->HasOutput("Y"), true, platform::errors::NotFound("Output(Y) of FoldOp should not be null")); auto in_dims = ctx->GetInputDim("X"); std::vector output_sizes = ctx->Attrs().Get>("output_sizes"); std::vector kernel_sizes = ctx->Attrs().Get>("kernel_sizes"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); std::vector dilations = ctx->Attrs().Get>("dilations"); PADDLE_ENFORCE_EQ( output_sizes.size(), 2, platform::errors::InvalidArgument( "It is expected output_size equals to 2, but got size %d", output_sizes.size())); PADDLE_ENFORCE_EQ( kernel_sizes.size(), 2, platform::errors::InvalidArgument( "It is expected kernel_size equals to 2, but got size %d", kernel_sizes.size())); PADDLE_ENFORCE_EQ( strides.size(), 2, platform::errors::InvalidArgument( "It is expected strides_size equals to 2, but got size %d", strides.size())); PADDLE_ENFORCE_EQ( paddings.size(), 4, platform::errors::InvalidArgument( "It is expected paddings_size equals to 4, but got size %d", paddings.size())); PADDLE_ENFORCE_EQ( dilations.size(), 2, platform::errors::InvalidArgument( "It is expected dilations_size equals to 2, but got size %d", dilations.size())); int output_height = output_sizes[0]; int output_width = output_sizes[1]; int kernel_height = kernel_sizes[0]; int kernel_width = kernel_sizes[1]; int dilation_height = dilations[0]; int dilation_width = dilations[1]; int stride_height = strides[0]; int stride_width = strides[1]; // check kernel_sizes PADDLE_ENFORCE_GT(kernel_height, 0, platform::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); PADDLE_ENFORCE_GT(kernel_width, 0, platform::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); // check strides PADDLE_ENFORCE_GT(stride_height, 0, platform::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); PADDLE_ENFORCE_GT(stride_width, 0, platform::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); // check dilations PADDLE_ENFORCE_GT(output_height, 1, platform::errors::InvalidArgument( "The `output_height` should be greater than one, " "but received output_height: %d .", output_height)); PADDLE_ENFORCE_GT(output_width, 1, platform::errors::InvalidArgument( "The `output_width` should be greater than one, " "but received output_width: %d .", output_width)); // check output size PADDLE_ENFORCE_GT( dilation_height, 0, platform::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); PADDLE_ENFORCE_GT( dilation_width, 0, platform::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); std::vector out_dims; // batch_size out_dims.push_back(in_dims[0]); // output_plane int output_channels = in_dims[1] / (kernel_width * kernel_height); out_dims.push_back(output_channels); int blocks_height = (output_sizes[0] + 2 * paddings[0] - (dilations[0] * (kernel_sizes[0] - 1) + 1)) / strides[0] + 1; int blocks_width = (output_sizes[1] + 2 * paddings[1] - (dilations[1] * (kernel_sizes[1] - 1) + 1)) / strides[1] + 1; // check output height and width PADDLE_ENFORCE_GT( blocks_height, 0, platform::errors::InvalidArgument( "The sliding blocks calculated from input spatial size (%d, %d), " "kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), " "is (%d, %d), which should be a positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); PADDLE_ENFORCE_GT( blocks_width, 0, platform::errors::InvalidArgument( "The sliding blocks calculated from input spatial size (%d, %d), " "kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), " "is (%d, %d), which should be a positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); PADDLE_ENFORCE_EQ( blocks_height * blocks_width, in_dims[2], platform::errors::InvalidArgument( "Given input output_size (%d, %d), " "kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), " "which should be expected size of input's dimension " "2 to match the calculated number of %d * %d = %d, but got %d", output_height, output_width, kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], blocks_height, blocks_width, blocks_height * blocks_width, in_dims[2])); PADDLE_ENFORCE_EQ( in_dims[1] % (kernel_sizes[0] * kernel_sizes[1]), 0, platform::errors::InvalidArgument( "Expected size of input's dimension 1 to be divisible by the" "product of kernel_size, but got input.size(1)=%d and " "kernel_size=( %d" ", %d).", in_dims[1], kernel_sizes[0], kernel_sizes[1])); out_dims.push_back(output_height); out_dims.push_back(output_width); ctx->SetOutputDim("Y", phi::make_ddim(out_dims)); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context()); } }; class FoldOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Tensor, " "the input of fold op. " "The format of X is [N, C_in, L], " "where N is the batch size, C_in is the input channels, " "L is the length"); AddOutput("Y", "Tensor, " "the output of unfold op. " "The format of Y is [N, C_out, output_height, output_width], " "where N is the batch size, " "C_in is the output channels of Y, output_height and " "output_width " "is the calculated height and width of output feature map."); AddAttr>( "output_sizes", "vector, the output sizes of the convolution operator."); AddAttr>( "kernel_sizes", "vector, the kernel sizes of the convolution operator."); AddAttr>( "strides", "vector, the strides of the convolution operator."); AddAttr>( "paddings", "vector, the paddings applied to pad the feature map."); AddAttr>( "dilations", "vector, the dilations of the convolution operator."); AddComment(R"DOC( **Fold Operator** This Operator is used to combines an array of sliding local blocks into a large containing tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each combined value in the resulting large tensor by summing all values from all containing blocks. Unfold extracts the values in the local blocks by copying from the large tensor. So, if the blocks overlap, they are not inverses of each other. )DOC"); } }; class FoldGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ( ctx->HasInput(framework::GradVarName("Y")), true, platform::errors::NotFound("The gradient of Y should not be null")); PADDLE_ENFORCE_EQ( ctx->HasInput("X"), true, platform::errors::NotFound("The input X should not be null")); PADDLE_ENFORCE_EQ( ctx->HasOutput(framework::GradVarName("X")), true, platform::errors::NotFound("The gradient of X should not be null")); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Y")), ctx.device_context()); } }; template class FoldGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("fold_grad"); op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y")); op->SetInput("X", this->Input("X")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetAttrMap(this->Attrs()); } }; DECLARE_NO_NEED_BUFFER_VARS_INFERER(FoldGradOpNoNeedBufferVarsInferer, "X"); } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(fold, ops::FoldOp, ops::FoldOpMaker, ops::FoldGradMaker, ops::FoldGradMaker); REGISTER_OPERATOR(fold_grad, ops::FoldGradOp, ops::FoldGradOpNoNeedBufferVarsInferer); REGISTER_OP_CPU_KERNEL(fold, ops::FoldOpKernel, ops::FoldOpKernel); REGISTER_OP_CPU_KERNEL(fold_grad, ops::FoldGradOpKernel, ops::FoldGradOpKernel);