/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once namespace paddle { /** * \brief The tensor evaluator classes. */ template class TensorApply { public: explicit INLINE TensorApply(const Derived& p) : data_(p.data_), stride_(p.stride_), height_(p.height_), width_(p.width_), useGpu_(p.useGpu_) {} INLINE T apply(int i, int j) const { return data_[i * stride_ + j]; } INLINE T apply(int index) const { return data_[index]; } INLINE T& applyRef(int i, int j) { return data_[i * stride_ + j]; } INLINE T& applyRef(int index) { return data_[index]; } INLINE size_t getWidth() const { return width_; } INLINE size_t getHeight() const { return height_; } INLINE bool isContiguous() const { return stride_ == width_ || height_ == 1; } INLINE bool useGpu() const { return useGpu_; } T* data_; size_t stride_; size_t height_; size_t width_; bool useGpu_; }; /** * \brief The tensor evaluator classes. * evaluator for rvalues */ template class TensorApply { public: explicit INLINE TensorApply(const Derived& p) : data_(p.data_), stride_(p.stride_), height_(p.height_), width_(p.width_), useGpu_(p.useGpu_) {} INLINE T apply(int i, int j) const { return data_[i * stride_ + j]; } INLINE T apply(int index) const { return data_[index]; } INLINE size_t getWidth() const { return width_; } INLINE size_t getHeight() const { return height_; } INLINE bool isContiguous() const { return stride_ == width_ || height_ == 1; } INLINE bool useGpu() const { return useGpu_; } const T* data_; size_t stride_; size_t height_; size_t width_; bool useGpu_; }; template class TensorApply, T> { public: explicit TensorApply(const TensorExpression& expr) : expr_(expr.derived()) {} INLINE T apply(int i, int j) const { return expr_.apply(i, j); } INLINE T apply(int index) const { return expr_.apply(index); } INLINE size_t getWidth() const { return expr_.getWidth(); } INLINE size_t getHeight() const { return expr_.getHeight(); } INLINE bool isContiguous() const { return expr_.isContiguous(); } INLINE bool useGpu() const { return expr_.useGpu(); } TensorApply expr_; }; /** * \brief The unary expression evaluator classes. */ template class TensorApply, T> { public: explicit INLINE TensorApply(const TensorUnaryOp& expr) : op_(expr.op_), expr_(expr.expr_) {} INLINE T apply(int i, int j) const { return op_(expr_.apply(i, j)); } INLINE T apply(int index) const { return op_(expr_.apply(index)); } INLINE size_t getWidth() const { return expr_.getWidth(); } INLINE size_t getHeight() const { return expr_.getHeight(); } INLINE bool isContiguous() const { return expr_.isContiguous(); } INLINE bool useGpu() const { return expr_.useGpu(); } const OP op_; TensorApply expr_; }; /** * \brief The binary expression evaluator classes. */ template class TensorApply, T> { public: explicit INLINE TensorApply( const TensorBinaryOp& expr) : op_(expr.op_), lhs_(expr.lhs_), rhs_(expr.rhs_) { #ifndef __CUDA_ARCH__ CHECK_EQ(lhs_.getWidth(), rhs_.getWidth()); CHECK_EQ(lhs_.getHeight(), rhs_.getHeight()); CHECK_EQ(lhs_.useGpu(), rhs_.useGpu()); #endif } INLINE T apply(int i, int j) const { return op_(lhs_.apply(i, j), rhs_.apply(i, j)); } INLINE T apply(int index) const { return op_(lhs_.apply(index), rhs_.apply(index)); } INLINE size_t getWidth() const { return lhs_.getWidth(); } INLINE size_t getHeight() const { return rhs_.getHeight(); } INLINE bool isContiguous() const { return lhs_.isContiguous() && rhs_.isContiguous(); } INLINE bool useGpu() const { return lhs_.useGpu(); } const OP op_; TensorApply lhs_; TensorApply rhs_; }; /** * \brief The ternary expression evaluator classes. */ template class TensorApply, T> { public: explicit INLINE TensorApply( const TensorTernaryOp& expr) : expr1_(expr.expr1_), expr2_(expr.expr2_), expr3_(expr.expr3_) { #ifndef __CUDA_ARCH__ CHECK_EQ(expr1_.getWidth(), expr2_.getWidth()); CHECK_EQ(expr1_.getWidth(), expr3_.getWidth()); CHECK_EQ(expr1_.getHeight(), expr2_.getHeight()); CHECK_EQ(expr1_.getHeight(), expr3_.getHeight()); CHECK_EQ(expr1_.useGpu(), expr2_.useGpu()); CHECK_EQ(expr1_.useGpu(), expr3_.useGpu()); #endif } INLINE T apply(int i, int j) const { return expr1_.apply(i, j) ? expr2_.apply(i, j) : expr3_.apply(i, j); } INLINE T apply(int index) const { return expr1_.apply(index) ? expr2_.apply(index) : expr3_.apply(index); } INLINE size_t getWidth() const { return expr1_.getWidth(); } INLINE size_t getHeight() const { return expr1_.getHeight(); } INLINE bool isContiguous() const { return expr1_.isContiguous() && expr2_.isContiguous() && expr3_.isContiguous(); } INLINE bool useGpu() const { return expr1_.useGpu(); } TensorApply expr1_; TensorApply expr2_; TensorApply expr3_; }; /** * \brief The const expression evaluator classes. */ template class TensorApply, T> { public: explicit INLINE TensorApply(const TensorConstant& expr) : op_(expr.op_), expr_(expr.expr_) {} INLINE T apply(int i, int j) const { return op_(i, j); } INLINE T apply(int index) const { return op_(index); } INLINE size_t getWidth() const { return expr_.getWidth(); } INLINE size_t getHeight() const { return expr_.getHeight(); } INLINE bool isContiguous() const { return true; } INLINE bool useGpu() const { return expr_.useGpu(); } const OP op_; TensorApply expr_; }; } // namespace paddle