# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ..fluid.framework import core, in_dygraph_mode, Variable from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype # TODO: define functions to get tensor attributes from ..fluid.layers import rank # noqa: F401 from ..fluid.layers import shape # noqa: F401 import paddle from paddle import _C_ops __all__ = [] def _complex_to_real_dtype(dtype): if dtype == core.VarDesc.VarType.COMPLEX64: return core.VarDesc.VarType.FP32 elif dtype == core.VarDesc.VarType.COMPLEX128: return core.VarDesc.VarType.FP64 else: return dtype def _real_to_complex_dtype(dtype): if dtype == core.VarDesc.VarType.FP32: return core.VarDesc.VarType.COMPLEX64 elif dtype == core.VarDesc.VarType.FP64: return core.VarDesc.VarType.COMPLEX128 else: return dtype def is_complex(x): """Return whether x is a tensor of complex data type(complex64 or complex128). Args: x (Tensor): The input tensor. Returns: bool: True if the data type of the input is complex data type, otherwise false. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1 + 2j, 3 + 4j]) print(paddle.is_complex(x)) # True x = paddle.to_tensor([1.1, 1.2]) print(paddle.is_complex(x)) # False x = paddle.to_tensor([1, 2, 3]) print(paddle.is_complex(x)) # False """ if not isinstance(x, (paddle.Tensor, paddle.static.Variable)): raise TypeError("Expected Tensor, but received type of x: {}".format( type(x))) dtype = x.dtype is_complex_dtype = (dtype == core.VarDesc.VarType.COMPLEX64 or dtype == core.VarDesc.VarType.COMPLEX128) return is_complex_dtype def is_floating_point(x): dtype = x.dtype is_fp_dtype = (dtype == core.VarDesc.VarType.FP32 or dtype == core.VarDesc.VarType.FP64 or dtype == core.VarDesc.VarType.FP16 or dtype == core.VarDesc.VarType.BF16) return is_fp_dtype def is_integer(x): """Return whether x is a tensor of integeral data type. Args: x (Tensor): The input tensor. Returns: bool: True if the data type of the input is integer data type, otherwise false. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1 + 2j, 3 + 4j]) print(paddle.is_integer(x)) # False x = paddle.to_tensor([1.1, 1.2]) print(paddle.is_integer(x)) # False x = paddle.to_tensor([1, 2, 3]) print(paddle.is_integer(x)) # True """ if not isinstance(x, (paddle.Tensor, paddle.static.Variable)): raise TypeError("Expected Tensor, but received type of x: {}".format( type(x))) dtype = x.dtype is_int_dtype = (dtype == core.VarDesc.VarType.UINT8 or dtype == core.VarDesc.VarType.INT8 or dtype == core.VarDesc.VarType.INT16 or dtype == core.VarDesc.VarType.INT32 or dtype == core.VarDesc.VarType.INT64) return is_int_dtype def real(x, name=None): """ Returns a new tensor containing real values of the input tensor. Args: x (Tensor): the input tensor, its data type could be complex64 or complex128. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor: a tensor containing real values of the input tensor. Examples: .. code-block:: python import paddle x = paddle.to_tensor( [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]]) # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, # [[(1+6j), (2+5j), (3+4j)], # [(4+3j), (5+2j), (6+1j)]]) real_res = paddle.real(x) # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[1., 2., 3.], # [4., 5., 6.]]) real_t = x.real() # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[1., 2., 3.], # [4., 5., 6.]]) """ if in_dygraph_mode(): return _C_ops.real(x) check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'real') helper = LayerHelper('real', **locals()) out = helper.create_variable_for_type_inference( dtype=_complex_to_real_dtype(helper.input_dtype())) helper.append_op(type='real', inputs={'X': x}, outputs={'Out': out}) return out def imag(x, name=None): """ Returns a new tensor containing imaginary values of input tensor. Args: x (Tensor): the input tensor, its data type could be complex64 or complex128. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor: a tensor containing imaginary values of the input tensor. Examples: .. code-block:: python import paddle x = paddle.to_tensor( [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]]) # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, # [[(1+6j), (2+5j), (3+4j)], # [(4+3j), (5+2j), (6+1j)]]) imag_res = paddle.imag(x) # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[6., 5., 4.], # [3., 2., 1.]]) imag_t = x.imag() # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[6., 5., 4.], # [3., 2., 1.]]) """ if in_dygraph_mode(): return _C_ops.imag(x) check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'imag') helper = LayerHelper('imag', **locals()) out = helper.create_variable_for_type_inference( dtype=_complex_to_real_dtype(helper.input_dtype())) helper.append_op(type='imag', inputs={'X': x}, outputs={'Out': out}) return out