# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np import op_test from decorator_helper import prog_scope import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.layers as layers from paddle.fluid import Program, program_guard from paddle.fluid.backward import append_backward class TestAssignOp(op_test.OpTest): def setUp(self): self.python_api = paddle.assign self.op_type = "assign" x = np.random.random(size=(100, 10)).astype('float64') self.inputs = {'X': x} self.outputs = {'Out': x} def test_forward(self): paddle.enable_static() self.check_output(check_eager=True) paddle.disable_static() def test_backward(self): paddle.enable_static() self.check_grad(['X'], 'Out', check_eager=True) paddle.disable_static() class TestAssignFP16Op(op_test.OpTest): def setUp(self): self.python_api = paddle.assign self.op_type = "assign" x = np.random.random(size=(100, 10)).astype('float16') self.inputs = {'X': x} self.outputs = {'Out': x} def test_forward(self): paddle.enable_static() self.check_output(check_eager=True) paddle.disable_static() def test_backward(self): paddle.enable_static() self.check_grad(['X'], 'Out', check_eager=True) paddle.disable_static() class TestAssignOpWithLoDTensorArray(unittest.TestCase): def test_assign_LoDTensorArray(self): paddle.enable_static() main_program = Program() startup_program = Program() with program_guard(main_program): x = fluid.data(name='x', shape=[100, 10], dtype='float32') x.stop_gradient = False y = fluid.layers.fill_constant( shape=[100, 10], dtype='float32', value=1 ) z = paddle.add(x=x, y=y) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) init_array = paddle.tensor.array_write(x=z, i=i) array = fluid.layers.assign(init_array) sums = paddle.tensor.array_read(array=init_array, i=i) mean = paddle.mean(sums) append_backward(mean) place = ( fluid.CUDAPlace(0) if core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) feed_x = np.random.random(size=(100, 10)).astype('float32') ones = np.ones((100, 10)).astype('float32') feed_add = feed_x + ones res = exe.run( main_program, feed={'x': feed_x}, fetch_list=[sums.name, x.grad_name], ) np.testing.assert_allclose(res[0], feed_add, rtol=1e-05) np.testing.assert_allclose(res[1], ones / 1000.0, rtol=1e-05) paddle.disable_static() class TestAssignOpError(unittest.TestCase): def test_errors(self): paddle.enable_static() with program_guard(Program(), Program()): # The type of input must be Variable or numpy.ndarray. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace() ) self.assertRaises(TypeError, fluid.layers.assign, x1) # When the type of input is numpy.ndarray, the dtype of input must be float32, int32. x2 = np.array([[2.5, 2.5]], dtype='uint8') self.assertRaises(TypeError, fluid.layers.assign, x2) paddle.disable_static() class TestAssignOApi(unittest.TestCase): def test_assign_LoDTensorArray(self): paddle.enable_static() main_program = Program() startup_program = Program() with program_guard(main_program): x = fluid.data(name='x', shape=[100, 10], dtype='float32') x.stop_gradient = False y = fluid.layers.fill_constant( shape=[100, 10], dtype='float32', value=1 ) z = paddle.add(x=x, y=y) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) init_array = paddle.tensor.array_write(x=z, i=i) array = paddle.assign(init_array) sums = paddle.tensor.array_read(array=init_array, i=i) mean = paddle.mean(sums) append_backward(mean) place = ( fluid.CUDAPlace(0) if core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) feed_x = np.random.random(size=(100, 10)).astype('float32') ones = np.ones((100, 10)).astype('float32') feed_add = feed_x + ones res = exe.run( main_program, feed={'x': feed_x}, fetch_list=[sums.name, x.grad_name], ) np.testing.assert_allclose(res[0], feed_add, rtol=1e-05) np.testing.assert_allclose(res[1], ones / 1000.0, rtol=1e-05) paddle.disable_static() def test_assign_NumpyArray(self): with fluid.dygraph.guard(): array = np.random.random(size=(100, 10)).astype(np.bool_) result1 = paddle.zeros(shape=[3, 3], dtype='float32') paddle.assign(array, result1) np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05) def test_assign_NumpyArray1(self): with fluid.dygraph.guard(): array = np.random.random(size=(100, 10)).astype(np.float32) result1 = paddle.zeros(shape=[3, 3], dtype='float32') paddle.assign(array, result1) np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05) def test_assign_NumpyArray2(self): with fluid.dygraph.guard(): array = np.random.random(size=(100, 10)).astype(np.int32) result1 = paddle.zeros(shape=[3, 3], dtype='float32') paddle.assign(array, result1) np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05) def test_assign_NumpyArray3(self): with fluid.dygraph.guard(): array = np.random.random(size=(100, 10)).astype(np.int64) result1 = paddle.zeros(shape=[3, 3], dtype='float32') paddle.assign(array, result1) np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05) def test_assign_List(self): l = [1, 2, 3] result = paddle.assign(l) np.testing.assert_allclose(result.numpy(), np.array(l), rtol=1e-05) def test_assign_BasicTypes(self): result1 = paddle.assign(2) result2 = paddle.assign(3.0) result3 = paddle.assign(True) np.testing.assert_allclose(result1.numpy(), np.array([2]), rtol=1e-05) np.testing.assert_allclose(result2.numpy(), np.array([3.0]), rtol=1e-05) np.testing.assert_allclose(result3.numpy(), np.array([1]), rtol=1e-05) def test_clone(self): self.python_api = paddle.clone x = paddle.ones([2]) x.stop_gradient = False x.retain_grads() clone_x = paddle.clone(x) clone_x.retain_grads() y = clone_x**3 y.backward() np.testing.assert_array_equal(x, [1, 1]) np.testing.assert_array_equal(clone_x.grad.numpy(), [3, 3]) np.testing.assert_array_equal(x.grad.numpy(), [3, 3]) paddle.enable_static() with program_guard(Program(), Program()): x_np = np.random.randn(2, 3).astype('float32') x = paddle.static.data("X", shape=[2, 3]) clone_x = paddle.clone(x) exe = paddle.static.Executor() y_np = exe.run( paddle.static.default_main_program(), feed={'X': x_np}, fetch_list=[clone_x], )[0] np.testing.assert_array_equal(y_np, x_np) paddle.disable_static() class TestAssignOpErrorApi(unittest.TestCase): def test_errors(self): paddle.enable_static() with program_guard(Program(), Program()): # The type of input must be Variable or numpy.ndarray. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace() ) self.assertRaises(TypeError, paddle.assign, x1) # When the type of input is numpy.ndarray, the dtype of input must be float32, int32. x2 = np.array([[2.5, 2.5]], dtype='uint8') self.assertRaises(TypeError, paddle.assign, x2) paddle.disable_static() def test_type_error(self): paddle.enable_static() with program_guard(Program(), Program()): x = [paddle.randn([3, 3]), paddle.randn([3, 3])] # not support to assign list(var) self.assertRaises(TypeError, paddle.assign, x) paddle.disable_static() class TestAssignDoubleGradCheck(unittest.TestCase): def assign_wrapper(self, x): return paddle.fluid.layers.assign(x[0]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = layers.data('data', [3, 4, 5], False, dtype) data.persistable = True out = paddle.fluid.layers.assign(data) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.assign_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestAssignTripleGradCheck(unittest.TestCase): def assign_wrapper(self, x): return paddle.fluid.layers.assign(x[0]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = layers.data('data', [3, 4, 5], False, dtype) data.persistable = True out = paddle.fluid.layers.assign(data) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.triple_grad_check_for_dygraph( self.assign_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == '__main__': unittest.main()