# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import inspect import os import pickle import socket import time import warnings import numpy as np import paddle import paddle.distributed as dist from paddle import fluid from paddle.autograd import no_grad from paddle.distributed import fleet from paddle.distributed.fleet.base import role_maker from paddle.fluid import core from paddle.fluid.dygraph.base import to_variable from paddle.fluid.executor import global_scope from paddle.fluid.framework import Variable from paddle.fluid.framework import _current_expected_place as _get_device from paddle.fluid.framework import _get_paddle_place, _non_static_mode from paddle.framework.io_utils import is_belong_to_optimizer from paddle.io import DataLoader, Dataset, DistributedBatchSampler from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX from paddle.metric import Metric from paddle.static import InputSpec as Input from .callbacks import EarlyStopping, config_callbacks from .model_summary import summary __all__ = [] _parallel_context_initialized = False def to_list(value): if value is None: return value if isinstance(value, (list, tuple)): return list(value) return [value] def to_numpy(var): assert isinstance( var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor) ), "not a variable" if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)): return np.array(var) t = global_scope().find_var(var.name).get_tensor() return np.array(t) def flatten_list(l): assert isinstance(l, list), "not a list" outl = [] splits = [] for sl in l: assert isinstance(sl, list), "sub content not a list" splits.append(len(sl)) outl += sl return outl, splits def restore_flatten_list(l, splits): outl = [] for split in splits: assert len(l) >= split, "list length invalid" sl, l = l[:split], l[split:] outl.append(sl) return outl def extract_args(func): return inspect.getfullargspec(func).args def _all_gather(x): output = [] dist.all_gather(output, x) output = paddle.concat(output, axis=0) return output def wait_server_ready(endpoints): assert not isinstance(endpoints, str) while True: all_ok = True not_ready_endpoints = [] for ep in endpoints: ip_port = ep.split(":") with contextlib.closing( socket.socket(socket.AF_INET, socket.SOCK_STREAM) ) as sock: sock.settimeout(2) result = sock.connect_ex((ip_port[0], int(ip_port[1]))) if result != 0: all_ok = False not_ready_endpoints.append(ep) if not all_ok: time.sleep(3) else: break def init_communicator( program, rank, nranks, wait_port, current_endpoint, endpoints ): if nranks < 2: return other_endpoints = endpoints[:] other_endpoints.remove(current_endpoint) block = program.global_block() if rank == 0 and wait_port: wait_server_ready(other_endpoints) if core.is_compiled_with_cuda(): nccl_id_var = block.create_var( name=fluid.unique_name.generate('nccl_id'), persistable=True, type=fluid.core.VarDesc.VarType.RAW, ) block.append_op( type='c_gen_nccl_id', inputs={}, outputs={'Out': nccl_id_var}, attrs={ 'rank': rank, 'endpoint': current_endpoint, 'other_endpoints': other_endpoints, }, ) block.append_op( type='c_comm_init', inputs={'X': nccl_id_var}, outputs={}, attrs={ 'nranks': nranks, 'rank': rank, 'ring_id': 0, }, ) elif core.is_compiled_with_npu(): hccl_id_var = block.create_var( name=fluid.unique_name.generate('hccl_id'), persistable=True, type=core.VarDesc.VarType.RAW, ) block.append_op( type='c_gen_hccl_id', inputs={}, outputs={'Out': hccl_id_var}, attrs={ 'rank': rank, 'endpoint': current_endpoint, 'other_endpoints': other_endpoints, }, ) block.append_op( type='c_comm_init_hccl', inputs={'X': hccl_id_var}, outputs={}, attrs={ 'rank': rank, 'ring_id': 0, 'device_id': int(os.getenv("FLAGS_selected_npus")), 'rank_ids': nranks, }, ) elif core.is_compiled_with_xpu(): bkcl_id_var = block.create_var( name=fluid.unique_name.generate('bkcl_id'), persistable=True, type=fluid.core.VarDesc.VarType.RAW, ) block.append_op( type='c_gen_bkcl_id', inputs={}, outputs={'Out': bkcl_id_var}, attrs={ 'rank': rank, 'endpoint': current_endpoint, 'other_endpoints': other_endpoints, }, ) block.append_op( type='c_comm_init', inputs={'X': bkcl_id_var}, outputs={}, attrs={ 'nranks': nranks, 'rank': rank, 'ring_id': 0, }, ) def prepare_distributed_context(place=None): if place is None: place = ( fluid.CUDAPlace(paddle.distributed.ParallelEnv().dev_id) if paddle.distributed.ParallelEnv().nranks > 1 else fluid.CUDAPlace(0) ) place = _get_paddle_place(place) strategy = paddle.distributed.parallel.ParallelStrategy() strategy.nranks = paddle.distributed.ParallelEnv().nranks strategy.local_rank = paddle.distributed.ParallelEnv().local_rank strategy.trainer_endpoints = ( paddle.distributed.ParallelEnv().trainer_endpoints ) strategy.current_endpoint = ( paddle.distributed.ParallelEnv().current_endpoint ) if strategy.nranks < 2: return global _parallel_context_initialized if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace): def _init_context(): communicator_prog = fluid.Program() init_communicator( communicator_prog, strategy.local_rank, strategy.nranks, True, strategy.current_endpoint, strategy.trainer_endpoints, ) exe = fluid.Executor(place) exe.run(communicator_prog) if fluid._non_static_mode(): fluid.disable_dygraph() _init_context() fluid.enable_dygraph(place) else: assert "Only support CUDAPlace for now." _parallel_context_initialized = True return strategy def _update_input_info(inputs): "Get input shape list by given inputs in Model initialization." shapes = None dtypes = None if isinstance(inputs, Input): shapes = [list(inputs.shape)] dtypes = [inputs.dtype] elif isinstance(inputs, (list, tuple)): shapes = [list(input.shape) for input in inputs] dtypes = [input.dtype for input in inputs] elif isinstance(inputs, dict): shapes = [list(inputs[name].shape) for name in inputs] dtypes = [inputs[name].dtype for name in inputs] else: return None return shapes, dtypes class StaticGraphAdapter: """ Model traning/inference with a static graph. """ def __init__(self, model): super().__init__() self.model = model # with `_build_once` gone, parameters are now created in `__init__` # so we need to keep track of the parameters already created self._startup_prog = fluid.default_startup_program() self._orig_prog = fluid.default_main_program() self._label_vars = {} # label variables self._input_vars = {} # label variables self._endpoints = {} self._loss_endpoint = None self._executor = None self._progs = {} self._compiled_progs = {} self._merge_count = { 'eval_total': 0, 'test_total': 0, 'eval_batch': 0, 'test_batch': 0, } self._nranks = paddle.distributed.ParallelEnv().nranks self._local_rank = paddle.distributed.ParallelEnv().local_rank self._amp_level = "O0" self._amp_configs = {} self._amp_custom_lists = {} self._use_fp16_guard = None @property def mode(self): return self.model.mode @mode.setter def mode(self, value): self.model.mode = value def train_batch(self, inputs, labels=None, update=True): assert ( self.model._optimizer ), "model not ready, please call `model.prepare()` first" self.mode = 'train' assert ( update is True ), "Does not support `update == False` in static graph mode by now." return self._run(inputs, labels) def eval_batch(self, inputs, labels=None): self.mode = 'eval' return self._run(inputs, labels) def predict_batch(self, inputs): self.mode = 'test' return self._run(inputs, None) def parameters(self, *args, **kwargs): return self.model.network.parameters(*args, **kwargs) def save(self, path): def _save(state, path): if not state: return state = { k: to_numpy(v) if isinstance(v, Variable) else v for k, v in state.items() } with open(path, 'wb') as f: pickle.dump(state, f) base = os.path.basename(path) assert base != "", "path should be of 'dirname/filename' format" dir_name = os.path.dirname(path) if dir_name and not os.path.exists(dir_name): os.makedirs(dir_name) param_path = path + ".pdparams" _save(self.model.network.state_dict(), param_path) prog = self._progs.get('train', None) if prog is None or self.model._optimizer is None: return # XXX `optimizer.state_dict()` only work in dygraph mode optim_path = path + ".pdopt" optim = { p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars()) } if not optim: return _save(optim, optim_path) # TODO: support save/load scaler state in static graph def load(self, param_state_pairs, optim_state): if self._executor is None: executor = fluid.Executor(fluid.CPUPlace())._default_executor else: executor = self._executor._default_executor # restore parameter states fluid.core._create_loaded_parameter( [param for param, state in param_state_pairs], global_scope(), executor, ) for param, state in param_state_pairs: self._set_var(param, state) # restore optimizer states # FIXME what if a different optimizer is used? if not self.model._optimizer or not optim_state: return self._load_optimizer(optim_state, executor) def _load_optimizer(self, state, executor): prog = self._progs.get('train', None) optim = list(filter(is_belong_to_optimizer, prog.list_vars())) if not optim: return fluid.core._create_loaded_parameter(optim, global_scope(), executor) converted_state = dict(state) for var in optim: if var.name in ["@LR_DECAY_COUNTER@", "global_step"]: # When using learning rate scheduler, dygraph would name the # global step var as "global_step" to save, while static-graph # would has a state var named as "@LR_DECAY_COUNTER@". # NOTE: dygraph saved global_step is 1 larger than that in # static-graph, since the time of global_step to increase is # different. state_val = ( (np.array(converted_state.pop("global_step")) - 1) if "global_step" in converted_state else converted_state.pop("@LR_DECAY_COUNTER@", None) ) if state_val is not None: converted_state[var.name] = state_val elif var.name.startswith("learning_rate_"): # When using static learning rate, static-graph would make it # a persistable var named 'unique_name.generate("learning_rate")', # However, dygraph wouldn't save it. if var.name not in state: continue else: # moment and other accumulators if var.name not in converted_state: # try to convert from dygraph name opt_name = self.model._optimizer._name opt_cls_name = self.model._optimizer.__class__.__name__ opt_unq_name = None for name in self.model._optimizer._accumulators.keys(): accum_name = ( name if opt_name is None else name[len(opt_name) + 1 :] ) for ( param_name, state_var, ) in self.model._optimizer._accumulators[name].items(): if opt_unq_name is None: # can not infer out the exact unique(opt_name), # thus try to extract rather than generate for state_key in sorted( state.keys(), key=lambda x: len(x), reverse=True, ): prefix = ( param_name + "_" + ( opt_cls_name if opt_name is None else opt_name ) + "_" ) if state_key.startswith(prefix): prefix_offset = state_key[ len(prefix) : ].find("_") + len(prefix) opt_unq_name = state_key[ len( param_name + "_" ) : prefix_offset ] # TODO: assert # assert opt_unq_name is None # gen(param.name + "_" + gen(opt_name) + "_" + accum_name) # always end with "_0" since the unique optimizer._name dy_state_name = ( param_name + "_" + opt_unq_name + "_" + accum_name + "_0" ) converted_state[ state_var.name ] = converted_state.pop(dy_state_name) assert ( var.name in converted_state ), "variable [{}] is not in optimizer state file".format(var.name) self._set_var(var, converted_state[var.name]) def _set_var(self, var, ndarray): t = global_scope().find_var(var.name).get_tensor() p = t._place() if p.is_cpu_place(): place = fluid.CPUPlace() elif p.is_cuda_pinned_place(): place = fluid.CUDAPinnedPlace() else: p = fluid.core.Place() p.set_place(t._place()) place = fluid.CUDAPlace(p.gpu_device_id()) t.set(ndarray, place) def _run(self, inputs, labels=None): compiled_prog = self._compiled_progs.get(self.mode, None) assert ( compiled_prog ), "Model is not ready, please call `model.prepare()` first" inputs = to_list(inputs) if labels is not None: labels = to_list(labels) assert len(inputs) == len(self._input_vars[self.mode]), ( "number of inputs" + " does not match number of arguments of `forward` method" ) feed = {} input_names = [v.name for v in self._input_vars[self.mode]] input_dtypes = [v.dtype for v in self._input_vars[self.mode]] for idx, n in enumerate(input_names): # train and test may take different arguments if inputs[idx] is not None: feed[n] = inputs[idx] if ( self._amp_level == 'O2' and input_dtypes[idx] == core.VarDesc.VarType.FP16 ): if isinstance(feed[n], core.LoDTensor): feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16) elif isinstance(feed[n], np.array): feed[n] = feed[n].astype('float16') if labels is not None: for idx, v in enumerate(self._label_vars[self.mode]): feed[v.name] = labels[idx] endpoints = self._endpoints[self.mode] if self.mode == 'test': fetch_list = endpoints['output'] else: metric_list, metric_splits = flatten_list(endpoints['metric']) fetch_list = endpoints['loss'] + metric_list num_loss = len(endpoints['loss']) # if fetch Variable is same as input Variable, do not fetch # from program, get it from input directly pruned_fetch_list = [] pruned_fetch_idx_name_map = [""] * len(fetch_list) for i, fetch_var in enumerate(fetch_list): if fetch_var.name in feed.keys(): pruned_fetch_idx_name_map[i] = fetch_var.name else: pruned_fetch_list.append(fetch_var) rets = self._executor.run( compiled_prog, feed=feed, fetch_list=pruned_fetch_list, return_numpy=False, ) # restore pruned fetch_list Variable from feeds for i, name in enumerate(pruned_fetch_idx_name_map): if len(name) > 0: rets.insert(i, feed[name]) # LoDTensor cannot be fetch as numpy directly rets = [np.array(v) for v in rets] if self.mode == 'test': return rets[:] metric_states = restore_flatten_list(rets[num_loss:], metric_splits) metrics = [] for metric, state in zip(self.model._metrics, metric_states): # cut off padding size if ( self.mode != 'train' and self.model._test_dataloader is not None and isinstance(self.model._test_dataloader, DataLoader) and self._nranks > 1 ): total_size = len(self.model._test_dataloader.dataset) # TODO: fixme if have better way to get batch size samples = state[0].shape[0] current_count = self._merge_count.get(self.mode + '_total', 0) if current_count + samples >= total_size: state = [ s[: int(total_size - current_count), ...] for s in state ] self._merge_count[self.mode + '_total'] = 0 self._merge_count[self.mode + '_batch'] = int( total_size - current_count ) else: self._merge_count[self.mode + '_total'] += samples self._merge_count[self.mode + '_batch'] = samples metrics.append(metric.update(*state)) if num_loss and len(metrics): return rets[:num_loss], metrics else: return rets[:num_loss] if num_loss else metrics def prepare(self): modes = ['train', 'eval', 'test'] for mode in modes: self._make_program(mode) self._compile_and_initialize(self._progs[mode], mode) def _make_program(self, mode): prog = self._progs.get(mode, None) if prog is not None: return prog = self._orig_prog.clone() # NOTE: When defining learning rate scheduling in static-graph, ops to # increase the global step var and calculate learning rate would be # prepended into _orig_prog. test program maked by `_orig_prog.clone` # also would include these ops. Thus must prune these ops in test # program, otherwise the global step would be changed in test. if mode != 'train': for op in list(prog.global_block().ops): prog.global_block()._remove_op(0) if ( mode == 'train' and self.model._optimizer and self.model._optimizer._learning_rate_map ): # HACK workaround learning rate map issue lr_var = self.model._optimizer._learning_rate_map[self._orig_prog] new_lr_var = prog.global_block().vars[lr_var.name] self.model._optimizer._learning_rate_map[prog] = new_lr_var losses = [] metrics = [] with fluid.program_guard(prog, self._startup_prog): inputs = self.model._inputs labels = self.model._labels if self.model._labels else [] inputs = [k._create_feed_layer() for k in to_list(inputs)] labels = [k._create_feed_layer() for k in to_list(labels)] self._label_vars[mode] = labels outputs = to_list(self.model.network.forward(*inputs)) if mode != 'test' and self.model._loss: losses = self.model._loss(*(outputs + labels)) if self._nranks > 1 and mode != 'train': outputs = [_all_gather(o) for o in outputs] if mode != 'test': labels = [_all_gather(l) for l in labels] if mode != 'test': for metric in self.model._metrics: metrics.append(to_list(metric.compute(*(outputs + labels)))) if mode == 'train' and self.model._optimizer: self._loss_endpoint = paddle.add_n(losses) if self._nranks > 1: role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) dist_strategy = fleet.DistributedStrategy() if self._amp_level != 'O0': dist_strategy.amp = True dist_strategy.amp_configs = self._amp_configs.copy() dist_strategy.amp_configs.update(self._amp_custom_lists) dist_strategy.amp_configs['use_pure_fp16'] = ( self._amp_level == 'O2' ) self.model._optimizer = fleet.distributed_optimizer( self.model._optimizer, strategy=dist_strategy ) elif self._amp_level != "O0" and core.is_compiled_with_cuda: amp_lists = ( paddle.static.amp.AutoMixedPrecisionLists( **self._amp_custom_lists ) if self._amp_custom_lists else None ) self.model._optimizer = paddle.static.amp.decorate( self.model._optimizer, amp_lists=amp_lists, use_pure_fp16=self._amp_level == "O2", use_fp16_guard=self._use_fp16_guard, **self._amp_configs ) self.model._optimizer.minimize(self._loss_endpoint) if mode != 'train': # clone again to put it in test mode prog = prog.clone(for_test=True) self._input_vars[mode] = inputs self._progs[mode] = prog self._endpoints[mode] = { "output": outputs, "loss": to_list(losses), "metric": metrics, } def _compile_and_initialize(self, prog, mode): compiled_prog = self._compiled_progs.get(mode, None) if compiled_prog is not None: return compiled_prog assert ( self.model._place is not None ), "device is not set, please call `model.prepare()` first" place = self.model._place # XXX *ALL WEIGHTS* should be initialized upon model construction # even if `forward()` may run different code path for different mode # therefore startup program only needs to run once if self._executor is None: self._executor = fluid.Executor(place) # XXX incremental initialization uninitialized = [] for var_py in self._startup_prog.list_vars(): var = fluid.global_scope().find_var(var_py.name) if ( not var_py.name.startswith('nccl_id') and var and var.get_tensor()._is_initialized() ): continue uninitialized.append(var_py) # for RawProgramOptimizer, it will insert OP with no outputs like: # c_comm_init(inputs={X=['comm_id_0']} # but we cannot prune this op. block = self._startup_prog.global_block() for op in block.ops: if op.type == "c_comm_init": uninitialized.append(op) if uninitialized: startup_prog = self._startup_prog._prune(uninitialized) self._executor.run(startup_prog) if ( self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda() ): self.model._optimizer.amp_init(place) if self._nranks < 2: compiled_prog = fluid.CompiledProgram(prog) else: compiled_prog = prog self._compiled_progs[mode] = compiled_prog class DynamicGraphAdapter: def __init__(self, model): super().__init__() self.model = model self._nranks = paddle.distributed.ParallelEnv().nranks self._local_rank = paddle.distributed.ParallelEnv().local_rank self._merge_count = { 'eval_total': 0, 'test_total': 0, 'eval_batch': 0, 'test_batch': 0, } self._input_info = None self._amp_level = "O0" self._amp_configs = {} self._amp_custom_lists = {} self._use_fp16_guard = True if self._nranks > 1: dist.init_parallel_env() stradegy = paddle.distributed.parallel.ParallelStrategy() stradegy.nranks = paddle.distributed.ParallelEnv().nranks stradegy.local_rank = paddle.distributed.ParallelEnv().local_rank stradegy.trainer_endpoints = ( paddle.distributed.ParallelEnv().trainer_endpoints ) stradegy.current_endpoint = ( paddle.distributed.ParallelEnv().current_endpoint ) self.ddp_model = paddle.DataParallel(self.model.network, stradegy) @property def mode(self): return self.model.mode @mode.setter def mode(self, value): self.model.mode = value # TODO multi device in dygraph mode not implemented at present time def train_batch(self, inputs, labels=None, update=True): assert ( self.model._optimizer ), "model not ready, please call `model.prepare()` first" self.model.network.train() self.mode = 'train' inputs = to_list(inputs) self._input_info = _update_input_info(inputs) labels = labels or [] labels = [to_variable(l) for l in to_list(labels)] # scaler should be initialized only once if self._amp_level != "O0" and self.model._scaler is None: self.model._scaler = paddle.amp.GradScaler(**self._amp_configs) with paddle.amp.auto_cast( enable=self._amp_level != 'O0', **self._amp_custom_lists, level=self._amp_level ): if self._nranks > 1: outputs = self.ddp_model(*[to_variable(x) for x in inputs]) else: outputs = self.model.network(*[to_variable(x) for x in inputs]) losses = self.model._loss(*(to_list(outputs) + labels)) losses = to_list(losses) final_loss = paddle.add_n(losses) if self._amp_level != "O0": scaled = self.model._scaler.scale(final_loss) scaled.backward() if update: self.model._scaler.minimize(self.model._optimizer, scaled) self.model.network.clear_gradients() else: final_loss.backward() if update: self.model._optimizer.minimize(final_loss) self.model.network.clear_gradients() metrics = [] for metric in self.model._metrics: metric_outs = metric.compute(*(to_list(outputs) + labels)) m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)]) metrics.append(m) return ( ([to_numpy(l) for l in losses], metrics) if len(metrics) > 0 else [to_numpy(l) for l in losses] ) def eval_batch(self, inputs, labels=None): self.model.network.eval() self.mode = 'eval' inputs = to_list(inputs) self._input_info = _update_input_info(inputs) labels = labels or [] labels = [to_variable(l) for l in to_list(labels)] outputs = self.model.network(*[to_variable(x) for x in inputs]) # Transfrom data to expected device expected_device = paddle.device.get_device() for o in to_list(outputs): o._to(device=expected_device) for l in labels: l._to(device=expected_device) if self.model._loss: losses = self.model._loss(*(to_list(outputs) + labels)) losses = to_list(losses) if self._nranks > 1: outputs = [_all_gather(o) for o in to_list(outputs)] labels = [_all_gather(l) for l in labels] metrics = [] for metric in self.model._metrics: # cut off padding value. if ( self.model._test_dataloader is not None and self._nranks > 1 and isinstance(self.model._test_dataloader, DataLoader) ): total_size = len(self.model._test_dataloader.dataset) samples = outputs[0].shape[0] current_count = self._merge_count.get(self.mode + '_total', 0) if current_count + samples >= total_size: outputs = [ o[: int(total_size - current_count)] for o in outputs ] labels = [ l[: int(total_size - current_count)] for l in labels ] self._merge_count[self.mode + '_total'] = 0 self._merge_count[self.mode + '_batch'] = int( total_size - current_count ) else: self._merge_count[self.mode + '_total'] += samples self._merge_count[self.mode + '_batch'] = samples metric_outs = metric.compute(*(to_list(outputs) + labels)) m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)]) metrics.append(m) if self.model._loss and len(metrics): return [to_numpy(l) for l in losses], metrics elif self.model._loss: return [to_numpy(l) for l in losses] else: return metrics def predict_batch(self, inputs): self.model.network.eval() self.mode = 'test' inputs = [to_variable(x) for x in to_list(inputs)] self._input_info = _update_input_info(inputs) outputs = self.model.network(*inputs) if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace): outputs = [_all_gather(o) for o in to_list(outputs)] return [to_numpy(o) for o in to_list(outputs)] def parameters(self, *args, **kwargs): return self.model.network.parameters(*args, **kwargs) def save(self, path): params = self.model.network.state_dict() paddle.save(params, path + '.pdparams') if self.model._optimizer is not None: if self.model._optimizer.state_dict(): optim = self.model._optimizer.state_dict() paddle.save(optim, path + '.pdopt') if hasattr(self.model, '_scaler') and self.model._scaler is not None: if self.model._scaler.state_dict(): scaler = self.model._scaler.state_dict() paddle.save(scaler, path + '.pdscaler') def load(self, param_state_pairs, optim_state, scaler_state=None): # restore parameter states for param, state in param_state_pairs: param.set_value(state) if hasattr(self.model, '_scaler') and self.model._scaler is not None: if scaler_state: self.model._scaler.load_state_dict(scaler_state) # resotre optimizer states if not self.model._optimizer or not optim_state: return # If optimizer performs set_state_dict when state vars haven't been created, # which would happen when set_state_dict before minimize, the state would be # stored in optimizer._accumulators_holder and loaded lazily. # To contrive this when loading from static-graph saved states, extend # state dict to include keys named accoring to dygraph naming rules. # TODO: if len(self.model._optimizer._accumulators) > 0 converted_state = dict(optim_state) opt_unq_name = self.model._optimizer._name if opt_unq_name is None: opt_unq_name = '' opt_cls_name = self.model._optimizer.__class__.__name__ opt_name = opt_unq_name[: opt_unq_name.rfind("_")] # remove suffix idx param_names = [param.name for param in self.model.network.parameters()] for var_name, state_var in sorted( optim_state.items(), key=lambda x: len(x[0]), reverse=True ): if var_name in ["@LR_DECAY_COUNTER@", "global_step"]: # NOTE: dygraph saved global_step is 1 larger than that in # static-graph, since the time of global_step to increase is # different. if var_name == "@LR_DECAY_COUNTER@": converted_state["global_step"] = ( np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1 ) else: # moment and other accumulators # extend state dict to include promising dygraph names for param_name in param_names: if var_name.startswith(param_name + "_" + opt_name): # when init optimizer with name accum_name = var_name[ len(param_name + "_" + opt_name + "_") : ] elif ( var_name.startswith(param_name + "_") and opt_name == opt_cls_name ): # when init optimizer without name accum_name = var_name[len(param_name + "_") :] else: continue # remove suffix idx accum_name = accum_name[: accum_name.rfind("_")] # state names always end with "_0" in dygraph because of the # unique optimizer._name dy_state_name = ( param_name + "_" + opt_unq_name + "_" + accum_name + "_0" ) converted_state[dy_state_name] = state_var if not hasattr(self.model._optimizer, 'set_state_dict'): warnings.warn( "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead." ) self.model._optimizer.set_dict(converted_state) else: self.model._optimizer.set_state_dict(converted_state) def prepare(self): if ( self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda() ): self.model.network, self.model._optimizer = paddle.amp.decorate( models=self.model.network, optimizers=self.model._optimizer, level='O2', ) if self._amp_level != "O0": self.model._scaler = None class Model: """ An Model object is network with training and inference features. Dynamic graph and static graph are supported at the same time, switched by `paddle.enable_static()`. The usage is as follows. But note, the switching between dynamic and static should be before instantiating a Model. The input description, i.e, paddle.static.InputSpec, must be required for static graph. When training on GPU, auto mixed precision (AMP O1) and pure float16 (AMP O2) training are both supported in static graph mode and dynamic mode. In static graph mode, before training with pure float16 (AMP O2), `multi_precision` could be set to True when creating optimizer, which can avoid poor accuracy or slow convergence in a way, and inputs of dtype float should be cast to float16 by users. `paddle.static.amp.fp16_guard` API should be also used to limit the range of pure float16 training, otherwise, 'use_fp16_guard' should be set to False by users. However, limiting the range of is not supported during training using AMP. Args: network (paddle.nn.Layer): The network is an instance of paddle.nn.Layer. inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network, could be a InputSpec instance, or list/tuple of InputSpec instances, or dict ({name: InputSpec}), and it couldn't be None in static graph. Default: None. labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network, could be a InputSpec instnace or list/tuple of InputSpec instances, or None. For static graph, if labels is required in loss, labels must be set. Otherwise, it could be None. Default: None. Examples: 1. A common example .. code-block:: python :name: code-example1 import paddle import paddle.nn as nn import paddle.vision.transforms as T from paddle.static import InputSpec device = paddle.set_device('cpu') # or 'gpu' net = nn.Sequential( nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10)) # inputs and labels are not required for dynamic graph. input = InputSpec([None, 784], 'float32', 'x') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(net, input, label) optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters()) model.prepare(optim, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy()) transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) data = paddle.vision.datasets.MNIST(mode='train', transform=transform) model.fit(data, epochs=2, batch_size=32, verbose=1) 2. An example using mixed precision training. .. code-block:: python :name: code-example2 # required: gpu import paddle import paddle.nn as nn import paddle.vision.transforms as T def run_example_code(): device = paddle.set_device('gpu') net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10)) model = paddle.Model(net) optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters()) amp_configs = { "level": "O1", "custom_white_list": {'conv2d'}, "use_dynamic_loss_scaling": True } model.prepare(optim, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy(), amp_configs=amp_configs) transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) data = paddle.vision.datasets.MNIST(mode='train', transform=transform) model.fit(data, epochs=2, batch_size=32, verbose=1) # mixed precision training is only supported on GPU now. if paddle.is_compiled_with_cuda(): run_example_code() """ def __init__(self, network, inputs=None, labels=None): self.mode = 'train' self.network = network self._inputs = None self._labels = None self._loss = None self._loss_weights = None self._optimizer = None self._input_info = None self._is_shape_inferred = False self._test_dataloader = None self.stop_training = False if not _non_static_mode(): if not isinstance(inputs, (list, tuple, dict, Input)): raise TypeError( "'inputs' must be list or tuple or dict, and couldn't be None." ) elif inputs: self._input_info = _update_input_info(inputs) self._inputs = self._verify_spec(inputs, is_input=True) self._labels = self._verify_spec(labels) # init backend if fluid._non_static_mode(): self._adapter = DynamicGraphAdapter(self) else: self._adapter = StaticGraphAdapter(self) def train_batch(self, inputs, labels=None, update=True): """ Run one training step on one batch of data. And using `update` indicates whether optimizer update gradients computing by this batch. Args: inputs (numpy.ndarray|Tensor|list): Batch of input data. It could be a numpy array or paddle.Tensor, or a list of arrays or tensors (in case the model has multiple inputs). labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be a numpy array or paddle.Tensor, or a list of arrays or tensors (in case the model has multiple labels). If has no labels, set None. Default: None. update (bool, optional): Whether update parameters after loss.backward() computing. Set it to False to accumulate gradients. Default: True. Returns: A list of scalar training loss if the model has no metrics, or a tuple (list of scalar loss, list of metrics) if the model set metrics. Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.static import InputSpec device = paddle.set_device('cpu') # or 'gpu' net = nn.Sequential( nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10)) input = InputSpec([None, 784], 'float32', 'x') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(net, input, label) optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters()) model.prepare(optim, paddle.nn.CrossEntropyLoss()) data = paddle.rand((4, 784), dtype="float32") label = paddle.randint(0, 10, (4, 1), dtype="int64") loss = model.train_batch([data], [label]) print(loss) # [array([2.192784], dtype=float32)] """ loss = self._adapter.train_batch(inputs, labels, update) if fluid._non_static_mode() and self._input_info is None: self._update_inputs() return loss @no_grad() def eval_batch(self, inputs, labels=None): """ Run one evaluating step on a batch of data. Args: inputs (numpy.ndarray|Tensor|list): Batch of input data. It could be a numpy array or paddle.Tensor, or a list of arrays or tensors (in case the model has multiple inputs). labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be a numpy array or paddle.Tensor, or a list of arrays or tensors (in case the model has multiple labels). If has no labels, set None. Default: None. Returns: A list of scalar testing loss if the model has no metrics, or a tuple (list of scalar loss, list of metrics) if the model set metrics. Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.static import InputSpec device = paddle.set_device('cpu') # or 'gpu' net = nn.Sequential( nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10)) input = InputSpec([None, 784], 'float32', 'x') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(net, input, label) optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters()) model.prepare(optim, paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) data = paddle.rand((4, 784), dtype="float32") label = paddle.randint(0, 10, (4, 1), dtype="int64") loss, acc = model.eval_batch([data], [label]) print(loss, acc) # [array([2.8825705], dtype=float32)] [0.0] """ loss = self._adapter.eval_batch(inputs, labels) if fluid._non_static_mode() and self._input_info is None: self._update_inputs() return loss @no_grad() def predict_batch(self, inputs): """ Run one predicting step on a batch of data. Args: inputs (numpy.ndarray|Tensor|list): Batch of input data. It could be a numpy array or paddle.Tensor, or a list of arrays or tensors (in case the model has multiple inputs). Returns: A list of numpy.ndarray of predictions, that is the outputs of Model forward. Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.static import InputSpec device = paddle.set_device('cpu') # or 'gpu' input = InputSpec([None, 784], 'float32', 'x') label = InputSpec([None, 1], 'int64', 'label') net = nn.Sequential( nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10), nn.Softmax()) model = paddle.Model(net, input, label) model.prepare() data = paddle.rand((1, 784), dtype="float32") out = model.predict_batch([data]) print(out) # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759, # 0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]], # dtype=float32)] """ loss = self._adapter.predict_batch(inputs) if fluid._non_static_mode() and self._input_info is None: self._update_inputs() return loss def save(self, path, training=True): """ This function saves parameters, optimizer information or model and paramters only for inference to path. It depends on the parameter `training`. If `training` is set to True, the parameters saved contain all the trainable Variable, will save to a file with suffix ".pdparams". The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated). This function will silently overwrite existing file at the target location. If `training` is set to False, only inference model will be saved. Args: path (str): The file prefix to save model. The format is 'dirname/file_prefix' or 'file_prefix'. if empty str. A exception will be raised. training (bool, optional): Whether to save for training. If not, save for inference only. Default: True. Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn import paddle.vision.transforms as T from paddle.static import InputSpec class Mnist(nn.Layer): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10), nn.Softmax()) def forward(self, x): return self.net(x) dynamic = True # False # if use static graph, do not set if not dynamic: paddle.enable_static() input = InputSpec([None, 784], 'float32', 'x') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(Mnist(), input, label) optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters()) model.prepare(optim, paddle.nn.CrossEntropyLoss()) transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) data = paddle.vision.datasets.MNIST(mode='train', transform=transform) model.fit(data, epochs=1, batch_size=32, verbose=0) model.save('checkpoint/test') # save for training model.save('inference_model', False) # save for inference """ if paddle.distributed.ParallelEnv().local_rank == 0: if not training: self._save_inference_model(path) else: self._adapter.save(path) def load(self, path, skip_mismatch=False, reset_optimizer=False): """ Load from files storing the model states and optimizer states. The file for optimizer states is not necessary if no need to restore the optimizer. NOTE: parameters are retrieved out from the file storing model states accoring to their structured names. For fine-tuning or transfer-learning models where some of the layers have changed, keep parameters needed to restore have same structured names in the pre-trained model and fine-tuning model. Args: path (str): The prefix of files storing the model states and optimizer states. The files would be `path.pdparams` and `path.pdopt` separately, and the latter is not necessary when no need to restore. skip_mismatch (bool, optional): Whether to skip the loading of mismatch parameter or raise an error when mismatch happens (not found the parameter in file storing model states of or receives a mismatch shape). Default: False. reset_optimizer (bool, optional): If True, ignore the providing file storing optimizer states and initialize optimizer states from scratch. Otherwise, restore optimizer states from `path.pdopt` if a optimizer has been set to the model. Default: False. Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.static import InputSpec device = paddle.set_device('cpu') input = InputSpec([None, 784], 'float32', 'x') model = paddle.Model(nn.Sequential( nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10), nn.Softmax()), input) model.save('checkpoint/test') model.load('checkpoint/test') """ def _load_state_from_path(path): if not os.path.exists(path): return with open(path, 'rb') as f: return pickle.load(f, encoding='latin1') def _check_match(key, param): state = param_state.get(key, None) if state is None: raise ValueError( "{} is not found in the providing file.".format(key) ) if list(state.shape) != list(param.shape): raise ValueError( "{} receives a shape {}, but the expected shape is {}.".format( key, list(state.shape), list(param.shape) ) ) return param, state def _strip_postfix(path): path, ext = os.path.splitext(path) assert ext in [ '', '.pdparams', '.pdopt', '.pdmodel', ], "Unknown postfix {} from weights".format(ext) return path path = _strip_postfix(path) param_state = _load_state_from_path(path + ".pdparams") assert param_state, "Failed to load parameters, please check path." matched_param_state = [] for key, param in self.network.state_dict().items(): try: match_res = _check_match(key, param) except ValueError as err: if skip_mismatch: warnings.warn( ("Skip loading for {}. ".format(key) + str(err)) ) # reset optimizer when mismatch happens reset_optimizer = True else: raise err matched_param_state.append(match_res) optim_state = ( None if reset_optimizer else _load_state_from_path(path + ".pdopt") ) # TODO: support save/load scaler state in static graph if _non_static_mode(): scaler_state = None if hasattr(self, '_scaler') and self._scaler is not None: if os.path.exists(path + '.pdscaler'): scaler_state = paddle.load(path + '.pdscaler') return self._adapter.load( matched_param_state, optim_state, scaler_state ) else: return self._adapter.load(matched_param_state, optim_state) def parameters(self, *args, **kwargs): """ Returns a list of parameters of the model. Returns: A list of Parameter in static graph. A list of ParamBase in dynamic graph. Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.static import InputSpec input = InputSpec([None, 784], 'float32', 'x') model = paddle.Model(nn.Sequential( nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10)), input) params = model.parameters() """ return self._adapter.parameters() def _prepare_amp(self, amp_configs): def _check_pure_fp16_configs(): # pure float16 training has some restricts now if self._adapter._amp_level == "O2" and self._optimizer._grad_clip: # clip by value is not supported assert isinstance( self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm), ), "Only ClipGradByNorm and ClipGradByGlobalNorm are supported in amp training with level=O2 currently." self._adapter._amp_custom_lists = {} self._adapter._amp_configs = {} # check and get level of mixed precision training if not amp_configs: self._adapter._amp_level = 'O0' return elif isinstance(amp_configs, str): if amp_configs not in ('O0', 'O1', 'O2'): raise ValueError( "The level of amp_configs should be 'O0', 'O1' or 'O2'." ) self._adapter._amp_level = amp_configs _check_pure_fp16_configs() return else: if 'level' not in amp_configs: self._adapter._amp_level = 'O1' elif amp_configs['level'] not in ('O0', 'O1', 'O2'): raise ValueError( "amp_configs['level'] should be 'O0', 'O1' or 'O2'." ) else: self._adapter._amp_level = amp_configs['level'] amp_config_key_set = set(amp_configs.keys()) - {'level'} if not amp_config_key_set or self._adapter._amp_level == 'O0': return if 'use_pure_fp16' in amp_configs: raise ValueError( "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'." ) _check_pure_fp16_configs() # construct amp_custom_lists if self._adapter._amp_level != 'O0' and amp_config_key_set: for param_name in [ 'custom_white_list', 'custom_black_list', 'custom_black_varnames', ]: if param_name in amp_config_key_set: self._adapter._amp_custom_lists[param_name] = amp_configs[ param_name ] amp_config_key_set -= {param_name} def _check_amp_configs(amp_config_key_set): accepted_param_set = { 'init_loss_scaling', 'incr_ratio', 'decr_ratio', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'use_dynamic_loss_scaling', 'use_fp16_guard', } if amp_config_key_set - accepted_param_set: raise ValueError( "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format( tuple(amp_config_key_set - accepted_param_set) ) ) if 'use_fp16_guard' in amp_config_key_set: if _non_static_mode(): raise ValueError( "'use_fp16_guard' is supported in static graph mode only." ) self._adapter._use_fp16_guard = amp_configs['use_fp16_guard'] amp_config_key_set.remove('use_fp16_guard') return amp_config_key_set amp_configs_set = _check_amp_configs(amp_config_key_set) for key in amp_configs_set: self._adapter._amp_configs[key] = amp_configs[key] def prepare( self, optimizer=None, loss=None, metrics=None, amp_configs=None ): """ Configures the model before runing. Args: optimizer (Optimizer|None, optional): Optimizer must be set in training and should be a Optimizer instance. It can be None in eval and test mode. Default: None. loss (Loss|Callable|None, optional): Loss function can be a `paddle.nn.Layer` instance or any callable function taken the predicted values and ground truth values as input. It can be None when there is no loss. Default: None. metrics (Metric|list[Metric]|None, optional): If metrics is set, all metrics will be calculated and output in train/eval mode. Default: None. amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure float16 training is used, the key 'level' of 'amp_configs' should be set to 'O1' or 'O2' respectively. Otherwise, the value of 'level' defaults to 'O0', which means float32 training. In addition to 'level', parameters consistent with mixed precision API could also be passed in. The supported keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'use_dynamic_loss_scaling', 'custom_white_list', 'custom_black_list', and 'custom_black_varnames'or 'use_fp16_guard' is only supported in static graph mode. Mixed precision API documentations :ref:`api_paddle_amp_auto_cast` and :ref:`api_paddle_amp_GradScaler` could be referenced for details. For convenience, 'amp_configs' could be set to 'O1' or 'O2' if no more parameters are needed. 'amp_configs' could be None in float32 training. Default: None. Returns: None """ self._place = _get_device() if isinstance(self._place, fluid.CUDAPlace): global _parallel_context_initialized if ( paddle.distributed.ParallelEnv().nranks > 1 and not _parallel_context_initialized ): if fluid._non_static_mode(): main_prog_seed = fluid.default_main_program().random_seed startup_prog_seed = ( fluid.default_startup_program().random_seed ) fluid.disable_dygraph() paddle.disable_static(self._place) # enable_dygraph would create and switch to a new program, # thus also copy seed to the new program fluid.default_main_program().random_seed = main_prog_seed fluid.default_startup_program().random_seed = ( startup_prog_seed ) else: prepare_distributed_context(self._place) _parallel_context_initialized = True self._optimizer = optimizer if loss is not None: if not isinstance(loss, paddle.nn.Layer) and not callable(loss): raise TypeError( "'loss' must be sub classes of `paddle.nn.Layer` or any callable function." ) self._loss = loss metrics = metrics or [] for metric in to_list(metrics): assert isinstance( metric, Metric ), "{} is not sub class of Metric".format(metric.__class__.__name__) self._metrics = to_list(metrics) self._prepare_amp(amp_configs) self._adapter.prepare() def fit( self, train_data=None, eval_data=None, batch_size=1, epochs=1, eval_freq=1, log_freq=10, save_dir=None, save_freq=1, verbose=2, drop_last=False, shuffle=True, num_workers=0, callbacks=None, accumulate_grad_batches=1, num_iters=None, ): """ Trains the model for a fixed number of epochs. If `eval_data` is set, evaluation will be done at the end of each epoch. Args: train_data (Dataset|DataLoader, optional): An iterable data loader is used for train. An instance of paddle paddle.io.Dataset or paddle.io.Dataloader is recomended. Default: None. eval_data (Dataset|DataLoader, optional): An iterable data loader is used for evaluation at the end of epoch. If None, will not do evaluation. An instance of paddle.io.Dataset or paddle.io.Dataloader is recomended. Default: None. batch_size (int|list, optional): The batch size of train_data and eval_data. When train_data and eval_data are both the instance of Dataloader, this parameter will be ignored. Default: 1. epochs (int, optional): The number of epochs to train the model. Default: 1. eval_freq (int, optional): The frequency, in number of epochs, an evalutation is performed. Default: 1. log_freq (int, optional): The frequency, in number of steps, the training logs are printed. Default: 10. save_dir(str|None, optional): The directory to save checkpoint during training. If None, will not save checkpoint. Default: None. save_freq (int, optional): The frequency, in number of epochs, to save checkpoint. Default: 1. verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch. Default: 2. drop_last (bool, optional): Whether drop the last incomplete batch of train_data when dataset size is not divisible by the batch size. When train_data is an instance of Dataloader, this parameter will be ignored. Default: False. shuffle (bool, optional): Whther to shuffle train_data. When train_data is an instance of Dataloader, this parameter will be ignored. Default: True. num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess used and loading data in main process. When train_data and eval_data are both the instance of Dataloader, this parameter will be ignored. Default: 0. callbacks (Callback|None, optional): A list of `Callback` instances to apply during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None. accumulate_grad_batches (int, optional): The number of batches to accumulate gradident during training process before optimizer updates. It can mimic large batch size. Default: 1. num_iters (int|None, optional): The number of iterations to evaluate the model. If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times. Default: None. Returns: None Examples: 1. An example use Dataset and set batch size, shuffle in fit. How to make a batch is done internally. .. code-block:: python :name: code-example3 import paddle import paddle.vision.transforms as T from paddle.vision.datasets import MNIST from paddle.static import InputSpec dynamic = True if not dynamic: paddle.enable_static() transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = MNIST(mode='train', transform=transform) val_dataset = MNIST(mode='test', transform=transform) input = InputSpec([None, 1, 28, 28], 'float32', 'image') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model( paddle.vision.models.LeNet(), input, label) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy(topk=(1, 2))) model.fit(train_dataset, val_dataset, epochs=2, batch_size=64, save_dir='mnist_checkpoint') 2. An example use DataLoader, batch size and shuffle is set in DataLoader. .. code-block:: python :name: code-example4 import paddle import paddle.vision.transforms as T from paddle.vision.datasets import MNIST from paddle.static import InputSpec dynamic = True if not dynamic: paddle.enable_static() transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = MNIST(mode='train', transform=transform) train_loader = paddle.io.DataLoader(train_dataset, batch_size=64) val_dataset = MNIST(mode='test', transform=transform) val_loader = paddle.io.DataLoader(val_dataset, batch_size=64) input = InputSpec([None, 1, 28, 28], 'float32', 'image') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model( paddle.vision.models.LeNet(), input, label) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy(topk=(1, 2))) model.fit(train_loader, val_loader, epochs=2, save_dir='mnist_checkpoint') """ assert train_data is not None, "train_data must be given!" if isinstance(batch_size, (tuple, list)) and all( [isinstance(x, int) for x in batch_size] ): assert ( len(batch_size) == 2 ), "batch_size length error, expected train_batch_size and eval_batch_size." train_batch_size, eval_batch_size = batch_size elif isinstance(batch_size, int): train_batch_size, eval_batch_size = batch_size, batch_size if isinstance(train_data, Dataset): train_sampler = DistributedBatchSampler( train_data, batch_size=train_batch_size, shuffle=shuffle, drop_last=drop_last, ) train_loader = DataLoader( train_data, batch_sampler=train_sampler, places=self._place, num_workers=num_workers, return_list=True, ) else: train_loader = train_data if eval_data is not None and isinstance(eval_data, Dataset): eval_sampler = DistributedBatchSampler( eval_data, batch_size=eval_batch_size ) eval_loader = DataLoader( eval_data, batch_sampler=eval_sampler, places=self._place, num_workers=num_workers, return_list=True, ) elif eval_data is not None: eval_loader = eval_data else: eval_loader = None do_eval = eval_loader is not None self._test_dataloader = eval_loader self._accumulate = accumulate_grad_batches steps = self._len_data_loader(train_loader) self.num_iters = num_iters if ( num_iters is not None and isinstance(num_iters, int) and isinstance(steps, int) ): assert num_iters > 0, "num_iters must be greater than 0!" epochs = (num_iters // steps) + 1 steps = min(num_iters, steps) cbks = config_callbacks( callbacks, model=self, epochs=epochs, steps=steps, log_freq=log_freq, save_freq=save_freq, save_dir=save_dir, verbose=verbose, metrics=self._metrics_name(), ) if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval: warnings.warn("EarlyStopping needs validation data.") cbks.on_begin('train') for epoch in range(epochs): cbks.on_epoch_begin(epoch) logs = self._run_one_epoch(train_loader, cbks, 'train') cbks.on_epoch_end(epoch, logs) if do_eval and epoch % eval_freq == 0: eval_steps = self._len_data_loader(eval_loader) cbks.on_begin( 'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}, ) eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval') cbks.on_end('eval', eval_logs) if self.stop_training: break cbks.on_end('train', logs) self._test_dataloader = None def evaluate( self, eval_data, batch_size=1, log_freq=10, verbose=2, num_workers=0, callbacks=None, num_iters=None, ): """ Evaluate the loss and metrics of the model on input dataset. Args: eval_data (Dataset|DataLoader): An iterable data loader is used for evaluation. An instance of paddle.io.Dataset or paddle.io.Dataloader is recomended. batch_size (int, optional): The batch size of train_data and eval_data. When eval_data is the instance of Dataloader, this argument will be ignored. Default: 1. log_freq (int, optional): The frequency, in number of steps, the eval logs are printed. Default: 10. verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch. Default: 2. num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess used and loading data in main process. When train_data and eval_data are both the instance of Dataloader, this parameter will be ignored. Default: 0. callbacks (Callback|None, optional): A list of `Callback` instances to apply during training. If None, `ProgBarLogger` and `ModelCheckpoint` are automatically inserted. Default: None. num_iters (int|None, optional): The number of iterations to evaluate the model. If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times. Default: None. Returns: dict: Result of metric. The key is the names of Metric, value is a scalar or numpy.array. Examples: .. code-block:: python import paddle import paddle.vision.transforms as T from paddle.static import InputSpec # declarative mode transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform) input = InputSpec([-1, 1, 28, 28], 'float32', 'image') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(paddle.vision.models.LeNet(), input, label) model.prepare(metrics=paddle.metric.Accuracy()) result = model.evaluate(val_dataset, batch_size=64) print(result) # {'acc': 0.0699} """ if eval_data is not None and isinstance(eval_data, Dataset): eval_sampler = DistributedBatchSampler( eval_data, batch_size=batch_size ) eval_loader = DataLoader( eval_data, batch_sampler=eval_sampler, places=self._place, num_workers=num_workers, return_list=True, ) else: eval_loader = eval_data self._test_dataloader = eval_loader cbks = config_callbacks( callbacks, model=self, log_freq=log_freq, verbose=verbose, metrics=self._metrics_name(), ) eval_steps = self._len_data_loader(eval_loader) self.num_iters = num_iters if ( num_iters is not None and isinstance(num_iters, int) and isinstance(eval_steps, int) ): assert num_iters > 0, "num_iters must be greater than 0!" eval_steps = min(num_iters, eval_steps) self.num_iters = eval_steps cbks.on_begin( 'eval', {'steps': eval_steps, 'metrics': self._metrics_name()} ) logs = self._run_one_epoch(eval_loader, cbks, 'eval') cbks.on_end('eval', logs) self._test_dataloader = None eval_result = {} for k in self._metrics_name(): eval_result[k] = logs[k] return eval_result def predict( self, test_data, batch_size=1, num_workers=0, stack_outputs=False, verbose=1, callbacks=None, ): """ Compute the output predictions on testing data. Args: test_data (Dataset|DataLoader): An iterable data loader is used for predict. An instance of paddle.io.Dataset or paddle.io.Dataloader is recomended. batch_size (int, optional): The batch size of test_data. When test_data is the instance of Dataloader, this argument will be ignored. Default: 1. num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess used and loading data in main process. When test_data is the instance of Dataloader, this argument will be ignored. Default: 0. stack_outputs (bool, optional): Whether stack output field like a batch, as for an output field of a sample is in shape [X, Y], test_data contains N samples, predict output field will be in shape [N, X, Y] if stack_output is True, and will be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs is False. stack_outputs as False is used for LoDTensor output situation, it is recommended set as True if outputs contains no LoDTensor. Default: False. verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent, 1 = progress bar, 2 = one line per batch. Default: 1. callbacks(Callback, optional): A Callback instance, Default: None. Returns: list: output of models. Examples: .. code-block:: python import numpy as np import paddle from paddle.static import InputSpec class MnistDataset(paddle.vision.datasets.MNIST): def __init__(self, mode, return_label=True): super().__init__(mode=mode) self.return_label = return_label def __getitem__(self, idx): img = np.reshape(self.images[idx], [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return img, def __len__(self): return len(self.images) test_dataset = MnistDataset(mode='test', return_label=False) # imperative mode input = InputSpec([-1, 1, 28, 28], 'float32', 'image') model = paddle.Model(paddle.vision.models.LeNet(), input) model.prepare() result = model.predict(test_dataset, batch_size=64) print(len(result[0]), result[0][0].shape) # 157 (64, 10) # declarative mode device = paddle.set_device('cpu') paddle.enable_static() input = InputSpec([-1, 1, 28, 28], 'float32', 'image') model = paddle.Model(paddle.vision.models.LeNet(), input) model.prepare() result = model.predict(test_dataset, batch_size=64) print(len(result[0]), result[0][0].shape) # 157 (64, 10) """ if test_data is not None and isinstance(test_data, Dataset): test_sampler = DistributedBatchSampler( test_data, batch_size=batch_size ) test_loader = DataLoader( test_data, batch_sampler=test_sampler, places=self._place, num_workers=num_workers, return_list=True, ) else: test_loader = test_data self._test_dataloader = test_loader cbks = config_callbacks(callbacks, model=self, verbose=verbose) test_steps = self._len_data_loader(test_loader) logs = {'steps': test_steps} cbks.on_begin('predict', logs) outputs = [] logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict') outputs = list(zip(*outputs)) # NOTE: for lod tensor output, we should not stack outputs # for stacking may lose its detail info if stack_outputs: outputs = [np.vstack(outs) for outs in outputs] self._test_dataloader = None cbks.on_end('predict', logs) return outputs def _save_inference_model(self, path): """ Save inference model can be used in static or dynamic mode. Args: path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``. Returns: None """ if fluid._non_static_mode(): with fluid.framework._dygraph_guard(None): layer = self.network if self._input_info is None: # No provided or inferred raise RuntimeError( "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation." ) if self._is_shape_inferred: warnings.warn( "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization." % self._input_info[0] ) paddle.jit.save(layer, path, input_spec=self._inputs) else: # path check file_prefix = os.path.basename(path) if file_prefix == "": raise ValueError( "The input path MUST be format of dirname/file_prefix " "[dirname\\file_prefix in Windows system], but received " "file_prefix is empty string." ) dirname = os.path.dirname(path) if dirname and not os.path.exists(dirname): os.makedirs(dirname) model_path = dirname model_filename = file_prefix + INFER_MODEL_SUFFIX params_filename = file_prefix + INFER_PARAMS_SUFFIX prog = self._adapter._progs.get('test', None) assert ( prog ), "Model is not ready, please call `model.prepare()` first" infer_prog = prog.clone(for_test=True) input_names = [v.name for v in self._adapter._input_vars['test']] endpoints = self._adapter._endpoints['test']['output'] fluid.io.save_inference_model( model_path, input_names, endpoints, self._adapter._executor, main_program=infer_prog, model_filename=model_filename, params_filename=params_filename, ) def _run_one_epoch( self, data_loader, callbacks, mode, logs={}, ): outputs = [] for step, data in enumerate(data_loader): # data might come from different types of data_loader and have # different format, as following: # 1. DataLoader in static graph: # [[input1, input2, ..., label1, lable2, ...]] # 2. DataLoader in dygraph # [input1, input2, ..., label1, lable2, ...] # 3. custumed iterator yield concated inputs and labels: # [input1, input2, ..., label1, lable2, ...] # 4. custumed iterator yield separated inputs and labels: # ([input1, input2, ...], [label1, lable2, ...]) # To handle all of these, flatten (nested) list to list. data = paddle.utils.flatten(data) # LoDTensor.shape is callable, where LoDTensor comes from # DataLoader in static graph batch_size = ( data[0].shape()[0] if callable(data[0].shape) else data[0].shape[0] ) callbacks.on_batch_begin(mode, step, logs) if mode != 'predict': _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]] if mode == 'train': _inputs.append( (step + 1) % self._accumulate == 0 or step + 1 == len(data_loader) ) outs = getattr(self, mode + '_batch')(*_inputs) if self._metrics and self._loss: metrics = [[float(l) for l in outs[0]]] elif self._loss: metrics = [[float(l) for l in outs]] else: metrics = [] # metrics for metric in self._metrics: res = metric.accumulate() metrics.extend(to_list(res)) assert len(self._metrics_name()) == len(metrics) for k, v in zip(self._metrics_name(), metrics): logs[k] = v else: if self._inputs is not None: outs = self.predict_batch(data[: len(self._inputs)]) else: outs = self.predict_batch(data) outputs.append(outs) logs['step'] = step if ( mode == 'train' or self._adapter._merge_count.get(mode + '_batch', 0) <= 0 ): logs['batch_size'] = ( batch_size * paddle.distributed.ParallelEnv().nranks ) else: logs['batch_size'] = self._adapter._merge_count[mode + '_batch'] callbacks.on_batch_end(mode, step, logs) if hasattr(self, 'num_iters') and self.num_iters is not None: self.num_iters -= 1 if self.num_iters <= 0: self.stop_training = True del self.num_iters break self._reset_metrics() if mode == 'predict': return logs, outputs return logs def summary(self, input_size=None, dtype=None): """Prints a string summary of the network. Args: input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. if not set, input_size will get from ``self._inputs`` if network only have one input, input_size can be tuple or InputSpec. if model have multiple input, input_size must be a list which contain every input's shape. Default: None. dtype (str, optional): if dtype is None, 'float32' will be used, Default: None. Returns: Dict: a summary of the network including total params and total trainable params. Examples: .. code-block:: python import paddle from paddle.static import InputSpec input = InputSpec([None, 1, 28, 28], 'float32', 'image') label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(paddle.vision.models.LeNet(), input, label) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, paddle.nn.CrossEntropyLoss()) params_info = model.summary() print(params_info) # {'total_params': 61610, 'trainable_params': 61610} """ assert ( input_size is not None or self._inputs is not None ), "'input_size' or 'self._input' must be set" if input_size is not None: _input_size = input_size else: _input_size = self._inputs return summary(self.network, _input_size, dtypes=dtype) def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False): out_specs = [] if specs is None: # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function # to generate `Input`. But how can we know the actual shape of each input tensor? if is_input: arg_names = extract_args(self.network.forward)[1:] # While Saving inference model in dygraph, and providing inputs only in running. if ( shapes is not None and dtypes is not None and fluid._non_static_mode() ): out_specs = [ Input(name=n, dtype=dtypes[i], shape=shapes[i]) for i, n in enumerate(arg_names) ] else: out_specs = [Input(name=n, shape=[None]) for n in arg_names] else: out_specs = to_list(specs) elif isinstance(specs, dict): assert is_input is False out_specs = [ specs[n] for n in extract_args(self.network.forward) if n != 'self' ] else: out_specs = to_list(specs) # Note: checks each element has specificed `name`. if out_specs is not None: for i, spec in enumerate(out_specs): assert isinstance(spec, Input) if spec.name is None: raise ValueError( "Requires Input[{}].name != None, but receive `None` with {}.".format( i, spec ) ) return out_specs def _reset_metrics(self): for metric in self._metrics: metric.reset() def _metrics_name(self): metrics_name = ['loss'] if self._loss else [] for m in self._metrics: metrics_name.extend(to_list(m.name())) return metrics_name def _len_data_loader(self, data_loader): try: steps = len(data_loader) except Exception: steps = None return steps def _update_inputs(self): "Update self._inputs according to given inputs." self._input_info = self._adapter._input_info if self._input_info is not None and len(self._input_info) == 2: self._inputs = self._verify_spec( None, self._input_info[0], self._input_info[1], True ) self._is_shape_inferred = True