/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_meta.h" #include "paddle/phi/kernels/sparse/sparse_utils_kernel.h" namespace phi { namespace sparse { template inline __device__ bool DevIsZero(const T* data, const int64_t cols) { const T zero = static_cast(0); // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1 for (int64_t i = 0; i < cols; i++) { if (data[i] != zero) { return false; } } return true; } template __global__ void GetNonZeroNums(const T* dense_data, const int rows, const int cols, int* non_zero_num, int* temp_indexs) { int tid = threadIdx.x + blockIdx.x * blockDim.x; __shared__ int counter; if (threadIdx.x == 0) counter = 0; __syncthreads(); for (int i = tid; i < rows; i += gridDim.x * blockDim.x) { int index = -1; // TODO(zhangkaihuo): when cols=1, vectorization can be used if (!DevIsZero(dense_data + i * cols, cols)) { // use reductions? atomicAdd(&counter, 1); index = i; } temp_indexs[i] = index; } __syncthreads(); if (threadIdx.x == 0) { atomicAdd(non_zero_num, counter); } } template __global__ void GetNonZeroElementsAndIndices(const T* dense_data, const int64_t sparse_dim, const int64_t cols, const int64_t* x_dims, const int non_zero_num, const int* indexs, int64_t* indices, T* sparse_data) { int tid = threadIdx.x + blockIdx.x * blockDim.x; for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) { int64_t sparse_index = indexs[i]; int64_t x_index = sparse_index; for (int64_t j = sparse_dim - 1; j >= 0; j--) { indices[j * non_zero_num + i] = sparse_index % x_dims[j]; sparse_index /= x_dims[j]; } for (int j = 0; j < cols; j++) { sparse_data[i * cols + j] = dense_data[x_index * cols + j]; } } } template void GetGpuLaunchConfig1D(const Context& dev_ctx, const int64_t n, int* grid_size, int* block_size) { const int MAX_BLOCK_DIM = dev_ctx.GetMaxThreadsPerBlock(); const int MAX_GRID_DIM = dev_ctx.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM; *block_size = (n >= MAX_BLOCK_DIM) ? MAX_BLOCK_DIM : (1 << static_cast(std::log2(n))); *grid_size = n / *block_size; *grid_size = (*grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : *grid_size; } template void DenseToSparseCooKernel(const Context& dev_ctx, const DenseTensor& x, const int64_t sparse_dim, SparseCooTensor* out) { const T* x_data = x.data(); const auto& x_dims = x.dims(); auto dims_2d = flatten_to_2d(x_dims, sparse_dim); const int rows = dims_2d[0]; const int cols = dims_2d[1]; auto nums_meta = phi::DenseTensorMeta(DataType::INT32, {1}, phi::DataLayout::NCHW); DenseTensor nums = phi::Empty(dev_ctx, std::move(nums_meta)); auto x_dims_meta = phi::DenseTensorMeta(DataType::INT64, {static_cast(x_dims.size())}, phi::DataLayout::NCHW); DenseTensor d_x_dims = phi::Empty(dev_ctx, std::move(x_dims_meta)); const auto place = dev_ctx.GetPlace(); // 1. get numbers of non zero elements, and get the index of non zero elements int* nums_ptr = nums.mutable_data(place); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(nums_ptr, 0, sizeof(int), dev_ctx.stream())); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(nums_ptr, 0, sizeof(int), dev_ctx.stream())); #endif int grid_size = 1, block_size = 1; GetGpuLaunchConfig1D(dev_ctx, rows, &grid_size, &block_size); auto temp_indexs_meta = phi::DenseTensorMeta(DataType::INT32, {rows}, phi::DataLayout::NCHW); DenseTensor temp_indexs = phi::Empty(dev_ctx, std::move(temp_indexs_meta)); int* temp_indexs_ptr = temp_indexs.mutable_data(place); GetNonZeroNums<<>>( x_data, rows, cols, nums_ptr, temp_indexs_ptr); #ifdef PADDLE_WITH_HIP thrust::remove(thrust::hip::par.on(dev_ctx.stream()), #else thrust::remove(thrust::cuda::par.on(dev_ctx.stream()), #endif temp_indexs_ptr, temp_indexs_ptr + rows, -1); // 2. copy non_zero_num to host, copy x_dims to device int non_zero_num = 0; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(&non_zero_num, nums_ptr, sizeof(int), hipMemcpyDeviceToHost, dev_ctx.stream())); #else PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(&non_zero_num, nums_ptr, sizeof(int), cudaMemcpyDeviceToHost, dev_ctx.stream())); #endif #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemcpyAsync(d_x_dims.mutable_data(place), x_dims.Get(), x_dims.size() * sizeof(x_dims[0]), hipMemcpyHostToDevice, dev_ctx.stream())); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemcpyAsync(d_x_dims.mutable_data(place), x_dims.Get(), x_dims.size() * sizeof(x_dims[0]), cudaMemcpyHostToDevice, dev_ctx.stream())); #endif dev_ctx.Wait(); // wait the copy const auto values_dims = InferDenseDims(x_dims, sparse_dim, non_zero_num); DenseTensorMeta indices_meta(DataType::INT64, {sparse_dim, static_cast(non_zero_num)}, DataLayout::NCHW); DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout); phi::DenseTensor indices( phi::make_intrusive( dev_ctx.GetPlace()), std::move(indices_meta)); phi::DenseTensor values( phi::make_intrusive( dev_ctx.GetPlace()), std::move(values_meta)); int64_t* indices_data = indices.mutable_data(place); T* sparse_data = values.mutable_data(place); // 3. calc indices by indexs and get values by indexs GetGpuLaunchConfig1D(dev_ctx, non_zero_num, &grid_size, &block_size); GetNonZeroElementsAndIndices<<>>( x_data, sparse_dim, cols, d_x_dims.data(), non_zero_num, temp_indexs_ptr, indices_data, sparse_data); out->SetMember(indices, values, x_dims, true); } __global__ void GetBatchSizes(const int64_t* crows, const int rows, const int batchs, int* batch_sizes) { const int tid = threadIdx.x + blockIdx.x * blockDim.x; if (tid < batchs) { batch_sizes[tid] = crows[tid * (rows + 1) + rows]; } } __global__ void ConvertCsrCrowsToCooRows(const int64_t* crows_ptr, const int* crows_offsets, int64_t* rows_ptr, int64_t* batch_ptr, const int rows) { const int b = blockIdx.y; const int64_t offset = crows_offsets ? crows_offsets[b] : 0; const int tid = threadIdx.x + blockIdx.x * blockDim.x; for (int i = tid; i < rows; i += gridDim.x * blockDim.x) { for (int j = crows_ptr[b * (rows + 1) + i]; j < crows_ptr[b * (rows + 1) + i + 1]; j++) { rows_ptr[offset + j] = i; if (batch_ptr) { batch_ptr[offset + j] = b; } } } } template void SparseCsrToCooKernel(const Context& dev_ctx, const SparseCsrTensor& x, SparseCooTensor* out) { const DDim& x_dims = x.dims(); const int64_t non_zero_num = x.non_zero_cols().numel(); const auto& csr_crows = x.non_zero_crows(); const auto& csr_cols = x.non_zero_cols(); const auto& csr_values = x.non_zero_elements(); const int64_t* csr_crows_data = csr_crows.data(); const int64_t* csr_cols_data = csr_cols.data(); const T* csr_values_data = csr_values.data(); int64_t sparse_dim = 2; if (x_dims.size() == 3) { sparse_dim = 3; } int batchs = x_dims.size() == 2 ? 1 : x_dims[0]; int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1]; const auto place = dev_ctx.GetPlace(); DenseTensorMeta indices_meta( DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW); DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout()); DenseTensorMeta offsets_meta(DataType::INT32, {batchs}, DataLayout::NCHW); DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta)); DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta)); DenseTensor offsets = phi::Empty(dev_ctx, std::move(offsets_meta)); int64_t* coo_indices = indices.mutable_data(place); int64_t* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices; int64_t* coo_rows_data = x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num; int64_t* coo_cols_data = coo_rows_data + non_zero_num; int* offsets_ptr = batchs == 1 ? nullptr : offsets.mutable_data(place); T* coo_values_data = values.mutable_data(place); int grid_size = 1, block_size = 1; if (batchs > 1) { GetGpuLaunchConfig1D(dev_ctx, batchs, &grid_size, &block_size); GetBatchSizes<<>>( csr_crows_data, rows, batchs, offsets_ptr); #ifdef PADDLE_WITH_HIP thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()), #else thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()), #endif offsets_ptr, offsets_ptr + batchs, offsets_ptr); } GetGpuLaunchConfig1D(dev_ctx, rows, &grid_size, &block_size); dim3 grids(grid_size, batchs, 1); ConvertCsrCrowsToCooRows<<>>( csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(coo_cols_data, csr_cols_data, sizeof(int64_t) * non_zero_num, hipMemcpyDeviceToDevice, dev_ctx.stream())); PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(coo_values_data, csr_values_data, sizeof(T) * non_zero_num, hipMemcpyDeviceToDevice, dev_ctx.stream())); #else PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(coo_cols_data, csr_cols_data, sizeof(int64_t) * non_zero_num, cudaMemcpyDeviceToDevice, dev_ctx.stream())); PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(coo_values_data, csr_values_data, sizeof(T) * non_zero_num, cudaMemcpyDeviceToDevice, dev_ctx.stream())); #endif out->SetMember(indices, values, x_dims, true); } __global__ void GetBatchsOffset(const int64_t* batchs_ptr, const int non_zero_num, int64_t* batchs_offset) { int tid = threadIdx.x + blockIdx.x * blockDim.x; for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) { if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) { batchs_offset[batchs_ptr[i]] = i + 1; } } } __global__ void ConvertCooRowsToCsrCrows( const int64_t* batchs_offset, // can be null if batchs = 1 const int64_t* coo_rows_data, int64_t* csr_crows_data, const int rows, const int64_t non_zero_num) { const int b = blockIdx.y; int batch_non_zero_num = batchs_offset == nullptr ? non_zero_num : batchs_offset[b]; if (batch_non_zero_num == 0) return; int batch_start = 0; if (b > 0) { batch_start = batchs_offset[b - 1]; batch_non_zero_num -= batch_start; } auto* coo_rows_ptr = coo_rows_data + batch_start; const int tid = threadIdx.x + blockIdx.x * blockDim.x; for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) { if (i == 0) { for (int j = 0; j <= coo_rows_ptr[0]; j++) { csr_crows_data[b * (rows + 1) + j] = 0; } } else { for (int j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) { csr_crows_data[b * (rows + 1) + j + 1] = i; } } if (i == batch_non_zero_num - 1) { for (int64_t i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1; i++) { csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num; } } } } template void SparseCooToCsrKernel(const Context& dev_ctx, const SparseCooTensor& x, SparseCsrTensor* out) { const auto& x_dims = x.dims(); bool valid = x_dims.size() == 2 || x_dims.size() == 3; PADDLE_ENFORCE_EQ(valid, true, paddle::platform::errors::InvalidArgument( "SparseCsrTensor only support 2-D or 3-D matrix")); const int64_t non_zero_num = x.nnz(); if (non_zero_num <= 0) return; int batchs = x_dims.size() == 2 ? 1 : x_dims[0]; int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1]; const auto place = dev_ctx.GetPlace(); DenseTensorMeta crows_meta( DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW); DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW); DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout()); phi::DenseTensor non_zero_crows( phi::make_intrusive(place), std::move(crows_meta)); phi::DenseTensor non_zero_cols( phi::make_intrusive(place), std::move(cols_meta)); phi::DenseTensor non_zero_elements( phi::make_intrusive(place), std::move(values_meta)); int64_t* csr_crows_data = non_zero_crows.mutable_data(place); int64_t* csr_cols_data = non_zero_cols.mutable_data(place); T* csr_values_data = non_zero_elements.mutable_data(place); const auto& coo_indices = x.non_zero_indices(); const auto& coo_values = x.non_zero_elements(); const int64_t* batchs_ptr = coo_indices.data(); const int64_t* coo_rows_data = batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num; const int64_t* coo_cols_data = coo_rows_data + non_zero_num; const T* coo_values_data = coo_values.data(); if (!x.coalesced()) { // TODO(zhangkahuo): call coalesced() to distinct and sort the indices } int grid_size = 1, block_size = 1; GetGpuLaunchConfig1D(dev_ctx, batchs, &grid_size, &block_size); if (batchs > 1) { DenseTensorMeta batchs_meta(DataType::INT64, {batchs}, DataLayout::NCHW); phi::DenseTensor batchs_offset( phi::make_intrusive(place), std::move(batchs_meta)); int64_t* batchs_offset_ptr = batchs_offset.mutable_data(place); GetBatchsOffset<<>>( batchs_ptr, non_zero_num, batchs_offset_ptr); dim3 grids(grid_size, batchs, 1); ConvertCooRowsToCsrCrows<<>>( batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num); } else { ConvertCooRowsToCsrCrows<<>>( nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num); } #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(csr_cols_data, coo_cols_data, sizeof(int64_t) * non_zero_num, hipMemcpyDeviceToDevice, dev_ctx.stream())); PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(csr_values_data, coo_values_data, sizeof(T) * non_zero_num, hipMemcpyDeviceToDevice, dev_ctx.stream())); #else PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(csr_cols_data, coo_cols_data, sizeof(int64_t) * non_zero_num, cudaMemcpyDeviceToDevice, dev_ctx.stream())); PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(csr_values_data, coo_values_data, sizeof(T) * non_zero_num, cudaMemcpyDeviceToDevice, dev_ctx.stream())); #endif out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims); } template __global__ void KernelSparseCooToDense(const IndicesT* indices, const IndicesT* sparse_offsets, const ValueT* data, ValueT* dense_data, const IndicesT non_zero_num, const int64_t base_offset, const int64_t sparse_dim) { int tid = threadIdx.x + blockIdx.x * blockDim.x; for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) { int64_t index = 0; for (int j = 0; j < sparse_dim; j++) { index += indices[j * non_zero_num + i] * sparse_offsets[j]; } for (int j = 0; j < base_offset; j++) { dense_data[index * base_offset + j] = data[i * base_offset + j]; } } } template void SparseCooToDenseKernel(const Context& dev_ctx, const SparseCooTensor& x, DenseTensor* out) { const auto non_zero_num = x.nnz(); const auto dense_dims = x.dims(); const auto indices = x.non_zero_indices(); const auto values = x.non_zero_elements(); const auto indices_dims = indices.dims(); int64_t sparse_dim = indices_dims[0]; if (indices_dims.size() == 1) { sparse_dim = 1; } const int64_t dense_dim = values.dims().size() - 1; const auto place = dev_ctx.GetPlace(); const T* x_data = values.data(); T* out_data = out->mutable_data(place); int64_t base_offset = 1; for (int64_t i = 0; i < dense_dim; i++) { base_offset *= dense_dims[sparse_dim + i]; } std::vector sparse_offsets(sparse_dim); int64_t offset = 1; for (int i = sparse_dim - 1; i >= 0; i--) { sparse_offsets[i] = offset; offset *= dense_dims[i]; } auto sparse_offset_meta = phi::DenseTensorMeta( DataType::INT64, {sparse_dim}, phi::DataLayout::NCHW); DenseTensor d_sparse_offsets = Empty(dev_ctx, std::move(sparse_offset_meta)); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemcpyAsync(d_sparse_offsets.mutable_data(place), sparse_offsets.data(), sparse_dim * sizeof(int64_t), hipMemcpyHostToDevice, dev_ctx.stream())); PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream())); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemcpyAsync(d_sparse_offsets.mutable_data(place), sparse_offsets.data(), sparse_dim * sizeof(int64_t), cudaMemcpyHostToDevice, dev_ctx.stream())); PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream())); #endif int grid_size = 1, block_size = 1; GetGpuLaunchConfig1D(dev_ctx, non_zero_num, &grid_size, &block_size); KernelSparseCooToDense< T, int64_t><<>>( indices.data(), d_sparse_offsets.data(), x_data, out_data, non_zero_num, base_offset, sparse_dim); } } // namespace sparse } // namespace phi PT_REGISTER_KERNEL(dense_to_sparse_coo, GPU, ALL_LAYOUT, phi::sparse::DenseToSparseCooKernel, float, double, phi::dtype::float16, uint8_t, int8_t, int16_t, int, int64_t) {} PT_REGISTER_KERNEL(sparse_csr_to_coo, GPU, ALL_LAYOUT, phi::sparse::SparseCsrToCooKernel, float, double, phi::dtype::float16, uint8_t, int8_t, int16_t, int, int64_t) {} PT_REGISTER_KERNEL(sparse_coo_to_csr, GPU, ALL_LAYOUT, phi::sparse::SparseCooToCsrKernel, float, double, phi::dtype::float16, uint8_t, int8_t, int16_t, int, int64_t) {} PT_REGISTER_KERNEL(dense_to_sparse_csr, GPU, ALL_LAYOUT, phi::sparse::DenseToSparseCsrKernel, float, double, phi::dtype::float16, uint8_t, int8_t, int16_t, int, int64_t) {} PT_REGISTER_KERNEL(sparse_coo_to_dense, GPU, ALL_LAYOUT, phi::sparse::SparseCooToDenseKernel, float, double, phi::dtype::float16, uint8_t, int8_t, int16_t, int, int64_t) {} PT_REGISTER_KERNEL(sparse_csr_to_dense, GPU, ALL_LAYOUT, phi::sparse::SparseCsrToDenseKernel, float, double, phi::dtype::float16, uint8_t, int8_t, int16_t, int, int64_t) {}