# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import cPickle import os import random import time import numpy import paddle.v2 as paddle import paddle.v2.dataset.imdb as imdb import paddle.fluid as fluid from paddle.v2 import batch import paddle.fluid.profiler as profiler def parse_args(): parser = argparse.ArgumentParser("Understand Sentiment by Dynamic RNN.") parser.add_argument( '--batch_size', type=int, default=32, help='The sequence number of a batch data. (default: %(default)d)') parser.add_argument( '--emb_dim', type=int, default=512, help='Dimension of embedding table. (default: %(default)d)') parser.add_argument( '--hidden_dim', type=int, default=512, help='Hidden size of lstm unit. (default: %(default)d)') parser.add_argument( '--pass_num', type=int, default=100, help='Epoch number to train. (default: %(default)d)') parser.add_argument( '--device', type=str, default='CPU', choices=['CPU', 'GPU'], help='The device type.') parser.add_argument( '--crop_size', type=int, default=int(os.environ.get('CROP_SIZE', '1500')), help='The max sentence length of input. Since this model use plain RNN,' ' Gradient could be explored if sentence is too long') args = parser.parse_args() return args word_dict = imdb.word_dict() def crop_sentence(reader, crop_size): unk_value = word_dict[''] def __impl__(): for item in reader(): if len([x for x in item[0] if x != unk_value]) < crop_size: yield item return __impl__ def main(): args = parse_args() lstm_size = args.hidden_dim data = fluid.layers.data( name="words", shape=[1], lod_level=1, dtype='int64') sentence = fluid.layers.embedding( input=data, size=[len(word_dict), args.emb_dim]) sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh') rnn = fluid.layers.DynamicRNN() with rnn.block(): word = rnn.step_input(sentence) prev_hidden = rnn.memory(value=0.0, shape=[lstm_size]) prev_cell = rnn.memory(value=0.0, shape=[lstm_size]) def gate_common( ipt, hidden, size, ): gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True) gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False) gate = fluid.layers.sums(input=[gate0, gate1]) return gate forget_gate = fluid.layers.sigmoid( x=gate_common(word, prev_hidden, lstm_size)) input_gate = fluid.layers.sigmoid( x=gate_common(word, prev_hidden, lstm_size)) output_gate = fluid.layers.sigmoid( x=gate_common(word, prev_hidden, lstm_size)) cell_gate = fluid.layers.tanh( x=gate_common(word, prev_hidden, lstm_size)) cell = fluid.layers.sums(input=[ fluid.layers.elementwise_mul( x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul( x=input_gate, y=cell_gate) ]) hidden = fluid.layers.elementwise_mul( x=output_gate, y=fluid.layers.tanh(x=cell)) rnn.update_memory(prev_cell, cell) rnn.update_memory(prev_hidden, hidden) rnn.output(hidden) last = fluid.layers.sequence_pool(rnn(), 'last') logit = fluid.layers.fc(input=last, size=2, act='softmax') loss = fluid.layers.cross_entropy( input=logit, label=fluid.layers.data( name='label', shape=[1], dtype='int64')) loss = fluid.layers.mean(x=loss) # add acc batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \ shape=[1], dtype='int64'), total=batch_size_tensor) inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): inference_program = fluid.io.get_inference_program( target_vars=[batch_acc, batch_size_tensor]) adam = fluid.optimizer.Adam() adam.minimize(loss) fluid.memory_optimize(fluid.default_main_program()) place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) def train_loop(pass_num, crop_size): with profiler.profiler(args.device, 'total') as prof: for pass_id in range(pass_num): train_reader = batch( paddle.reader.shuffle( crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000), batch_size=args.batch_size) word_nums = 0 pass_start_time = time.time() for batch_id, data in enumerate(train_reader()): tensor_words = to_lodtensor([x[0] for x in data], place) for x in data: word_nums += len(x[0]) label = numpy.array([x[1] for x in data]).astype("int64") label = label.reshape((-1, 1)) loss_np, acc, weight = exe.run( fluid.default_main_program(), feed={"words": tensor_words, "label": label}, fetch_list=[loss, batch_acc, batch_size_tensor]) print("pass_id=%d, batch_id=%d, loss=%f, acc=%f" % (pass_id, batch_id, loss_np, acc)) pass_end_time = time.time() time_consumed = pass_end_time - pass_start_time words_per_sec = word_nums / time_consumed print("pass_id=%d, sec/pass: %f, words/s: %f" % (pass_id, time_consumed, words_per_sec)) train_loop(args.pass_num, args.crop_size) def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = numpy.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res if __name__ == '__main__': main()