// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/affine_grid_grad_kernel.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_device_function.h" #include "paddle/phi/backends/gpu/gpu_primitives.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/affine_grid_utils.h" namespace phi { template __global__ void LinspaceKernel(T start, T step, int64_t size, T* out) { CUDA_KERNEL_LOOP(index, size) { out[index] = start + step * index; } } template struct Linspace { void operator()(T start, T end, int count, bool align_corners, DenseTensor* numbers, const phi::GPUContext& dev_ctx) { numbers->Resize(phi::make_ddim({count})); T* number_data = dev_ctx.template Alloc(numbers); T slice = (end - start) / (T)(count - 1); if (!align_corners) { slice = (end - start) / (T)count; start *= (T)(count - 1) / (T)count; } auto stream = dev_ctx.stream(); int block = 512; int grid = (count + block - 1) / block; LinspaceKernel <<>>(start, slice, count, number_data); } }; template __global__ void affine_grid_grad_kernel_4d(const int count, int n, int out_h, int out_w, T h_start, T w_start, T h_step, T w_step, const T* out_grad, // N, H, W, 2 T* theta_grad) { // N, 2, 3 CUDA_KERNEL_LOOP(index, count) { int w = index % out_w; int h = (index / out_w) % out_h; int n = index / (out_w * out_h); T h_coor = h_step * static_cast(h) + static_cast(h_start); T w_coor = w_step * static_cast(w) + static_cast(w_start); int theta_offset = n * 6; // 2 * 3; T out_grad_x = out_grad[index * 2]; phi::CudaAtomicAdd(theta_grad + theta_offset, out_grad_x * w_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 1, out_grad_x * h_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 2, out_grad_x); T out_grad_y = out_grad[index * 2 + 1]; phi::CudaAtomicAdd(theta_grad + theta_offset + 3, out_grad_y * w_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 4, out_grad_y * h_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 5, out_grad_y); } } template __global__ void affine_grid_grad_kernel_5d(const int count, int n, int out_d, int out_h, int out_w, T d_start, T h_start, T w_start, T d_step, T h_step, T w_step, const T* out_grad, // N, D, H, W, 3 T* theta_grad) { // N, 3, 4 CUDA_KERNEL_LOOP(index, count) { int w = index % out_w; int h = (index / out_w) % out_h; int d = (index / (out_w * out_h)) % out_d; int n = index / (out_w * out_h * out_d); T d_coor = d_step * static_cast(d) + static_cast(d_start); T h_coor = h_step * static_cast(h) + static_cast(h_start); T w_coor = w_step * static_cast(w) + static_cast(w_start); int theta_offset = n * 12; // 3 * 4; T out_grad_x = out_grad[index * 3]; phi::CudaAtomicAdd(theta_grad + theta_offset, out_grad_x * w_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 1, out_grad_x * h_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 2, out_grad_x * d_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 3, out_grad_x); T out_grad_y = out_grad[index * 3 + 1]; phi::CudaAtomicAdd(theta_grad + theta_offset + 4, out_grad_y * w_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 5, out_grad_y * h_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 6, out_grad_y * d_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 7, out_grad_y); T out_grad_z = out_grad[index * 3 + 2]; phi::CudaAtomicAdd(theta_grad + theta_offset + 8, out_grad_z * w_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 9, out_grad_z * h_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 10, out_grad_z * d_coor); phi::CudaAtomicAdd(theta_grad + theta_offset + 11, out_grad_z); } } template void AffineGridGrad4DCUDAKernel(const Context& dev_ctx, const DenseTensor& output_grad, const IntArray& outputShape, bool align_corners, DenseTensor* input_grad) { auto& theta_grad = input_grad; int n = output_grad.dims()[0]; auto& size_attr = outputShape.GetData(); int h = 0; int w = 0; h = size_attr[2]; w = size_attr[3]; theta_grad->Resize(phi::make_ddim({n, 2, 3})); T* theta_grad_data = dev_ctx.template Alloc(theta_grad); phi::funcs::SetConstant()( dev_ctx, theta_grad, static_cast(0)); T h_step; T w_step; T h_start = -1; T w_start = -1; if (align_corners) { h_step = static_cast(2) / static_cast(h - 1); w_step = static_cast(2) / static_cast(w - 1); } else { h_step = static_cast(2) / static_cast(h); w_step = static_cast(2) / static_cast(w); h_start *= static_cast(h - 1) / static_cast(h); w_start *= static_cast(w - 1) / static_cast(w); } const int count = n * h * w; VLOG(3) << "count: " << count << "; h_step: " << h_step << "; w_step: " << w_step << "; h_start: " << h_start << "; w_start: " << w_start; int block = 512; int grid = (count + block - 1) / block; auto cu_stream = dev_ctx.stream(); affine_grid_grad_kernel_4d<<>>( count, n, h, w, h_start, w_start, h_step, w_step, output_grad.data(), theta_grad_data); } template void AffineGridGrad5DCUDAKernel(const Context& dev_ctx, const DenseTensor& output_grad, const IntArray& outputShape, bool align_corners, DenseTensor* input_grad) { // VLOG(0) << "in affine grid backward 5D"; auto& theta_grad = input_grad; int n = output_grad.dims()[0]; auto& size_attr = outputShape.GetData(); int d = 0; int h = 0; int w = 0; d = size_attr[2]; h = size_attr[3]; w = size_attr[4]; theta_grad->Resize(phi::make_ddim({n, 3, 4})); T* theta_grad_data = dev_ctx.template Alloc(theta_grad); phi::funcs::SetConstant()( dev_ctx, theta_grad, static_cast(0)); T d_step; T h_step; T w_step; T d_start = -1; T h_start = -1; T w_start = -1; if (align_corners) { d_step = static_cast(2) / static_cast(d - 1); h_step = static_cast(2) / static_cast(h - 1); w_step = static_cast(2) / static_cast(w - 1); } else { d_step = static_cast(2) / static_cast(d); h_step = static_cast(2) / static_cast(h); w_step = static_cast(2) / static_cast(w); d_start *= static_cast(d - 1) / static_cast(d); h_start *= static_cast(h - 1) / static_cast(h); w_start *= static_cast(w - 1) / static_cast(w); } const int count = n * d * h * w; int block = 512; int grid = (count + block - 1) / block; auto cu_stream = dev_ctx.stream(); affine_grid_grad_kernel_5d<<>>( count, n, d, h, w, d_start, h_start, w_start, d_step, h_step, w_step, output_grad.data(), theta_grad_data); } template void AffineGridGradCUDAKernel(const Context& dev_ctx, const DenseTensor& input, const IntArray& outputShape, bool align_corners, DenseTensor* output) { auto* theta = &input; auto theta_size = theta->dims().size(); if (theta_size == 4) { AffineGridGrad4DCUDAKernel( dev_ctx, input, outputShape, align_corners, output); } else { AffineGridGrad5DCUDAKernel( dev_ctx, input, outputShape, align_corners, output); } } } // namespace phi PD_REGISTER_KERNEL(affine_grid_grad, GPU, ALL_LAYOUT, phi::AffineGridGradCUDAKernel, float, double){};