// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/index_sample_grad_kernel.h" #include #include #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { namespace { #define PREDEFINED_BLOCK_SIZE_X 512 #define PREDEFINED_BLOCK_SIZE 1024 #define MIN(a, b) ((a) < (b) ? (a) : (b)) } // namespace template __global__ void IndexSampleGrad(const IndexT* index, T* in_grad, const T* out_grad, size_t index_length, size_t input_length, size_t batch_size, bool same_data_in_row = true) { unsigned int index_i = blockDim.x * blockIdx.x + threadIdx.x; unsigned int index_j = blockDim.y * blockIdx.y + threadIdx.y; for (; index_j < batch_size; index_j += blockDim.y * gridDim.y) { index_i = blockDim.x * blockIdx.x + threadIdx.x; for (; index_i < index_length; index_i += blockDim.x * gridDim.x) { unsigned int index_idx = index_j * index_length + index_i; unsigned int in_idx = index_j * input_length + index_i; IndexT sample_idx = index[index_idx]; if (same_data_in_row) { paddle::platform::CudaAtomicAdd( &(in_grad[in_idx - index_i + sample_idx]), out_grad[sample_idx]); } else { in_grad[in_idx - index_i + sample_idx] = out_grad[index_idx]; } } } } template void IndexSampleGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& index, const DenseTensor& out_grad, DenseTensor* x_grad) { const T* output_grad_data = out_grad.data(); T* input_grad_data = ctx.template Alloc(x_grad); auto index_type = index.dtype(); bool index_type_match = index_type == DataType::INT32 || index_type == DataType::INT64; PADDLE_ENFORCE_EQ( index_type_match, true, errors::InvalidArgument( "Input(Index) holds the wrong type, it holds %s, but " "desires to be %s or %s", paddle::framework::DataTypeToString( paddle::framework::TransToProtoVarType(index_type)), paddle::framework::DataTypeToString( paddle::framework::TransToProtoVarType(DataType::INT32)), paddle::framework::DataTypeToString( paddle::framework::TransToProtoVarType((DataType::INT64))))); auto stream = reinterpret_cast(ctx).stream(); auto input_num = x.numel(); auto input_dim = x.dims(); auto index_dim = index.dims(); size_t batch_size = index_dim[0]; size_t input_length = input_dim[1]; size_t index_length = index_dim[1]; bool same_data_in_index_row = index_length == 1 ? false : true; auto block_width = paddle::platform::RoundToPowerOfTwo(index_length); block_width = MIN(block_width, PREDEFINED_BLOCK_SIZE_X); auto block_height = paddle::platform::RoundToPowerOfTwo(index_length * batch_size) / block_width; block_height = MIN(block_height, PREDEFINED_BLOCK_SIZE / block_width); dim3 block_dim(block_width, block_height); dim3 grid_dim((index_length + block_dim.x - 1) / block_dim.x, (batch_size + block_dim.y - 1) / block_dim.y); paddle::platform::LimitGridDim(ctx, &grid_dim); phi::funcs::SetConstant set_zero; set_zero(ctx, x_grad, static_cast(0)); if (index_type == DataType::INT64) { const int64_t* index_data = index.data(); IndexSampleGrad <<>>(index_data, input_grad_data, output_grad_data, index_length, input_length, batch_size, same_data_in_index_row); } else if (index_type == DataType::INT32) { const int* index_data = index.data(); IndexSampleGrad <<>>(index_data, input_grad_data, output_grad_data, index_length, input_length, batch_size, same_data_in_index_row); } } } // namespace phi PD_REGISTER_KERNEL(index_sample_grad, GPU, ALL_LAYOUT, phi::IndexSampleGradKernel, float, double, int, int64_t) {}