# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import sys import numpy as np import paddle from op_test import OpTest def compute_segment_sum(x, segment_ids): length = segment_ids[-1] + 1 target_shape = list(x.shape) target_shape[0] = length results = np.zeros(target_shape, dtype=x.dtype) for index, ids in enumerate(segment_ids): results[ids, :] += x[index, :] return results def compute_segment_mean(x, segment_ids): length = segment_ids[-1] + 1 target_shape = list(x.shape) target_shape[0] = length results = np.zeros(target_shape, dtype=x.dtype) count = np.zeros(length, dtype=x.dtype) + 1e-8 for index, ids in enumerate(segment_ids): results[ids, :] += x[index, :] count[ids] += 1 results = results / count.reshape([-1, 1]) return results def compute_segment_min_max(x, segment_ids, pooltype="MAX"): length = segment_ids[-1] + 1 target_shape = list(x.shape) target_shape[0] = length gradient = np.zeros_like(x) results = np.zeros(target_shape, dtype=x.dtype) last_idx = 0 current_id = segment_ids[0] for idx in range(1, len(segment_ids) + 1): if idx < len(segment_ids): if segment_ids[idx] == current_id: continue sub_x = x[last_idx:idx, :] if pooltype == "MAX": results[current_id] = np.amax(sub_x, axis=0) elif pooltype == "MIN": results[current_id] = np.amin(sub_x, axis=0) else: raise ValueError("Invalid pooltype, only MAX, MIN supported!") gradient[last_idx:idx, :][sub_x == results[current_id]] = 1 last_idx = idx if idx < len(segment_ids): current_id = segment_ids[idx] return results, gradient / results.size class TestSegmentOps(OpTest): def set_data(self): x = np.random.uniform(-1, 1, self.shape).astype(self.dtype) segment_ids = self.set_segment(len(x), len(x) // 5 + 1) return x, segment_ids def set_segment(self, origin_len, reduce_len): segment = np.zeros(reduce_len, dtype='int64') segment = np.random.randint(0, reduce_len, size=[origin_len]) segment = np.sort(segment) return segment.astype('int64') def compute(self, x, segment_ids): return compute_segment_sum(x, segment_ids) def prepare(self): self.op_type = "segment_pool" self.dtype = np.float64 self.shape = [30, 15] self.attrs = {"pooltype": "SUM"} self.python_api = paddle.incubate.segment_sum def setUp(self): self.prepare() x, segment_ids = self.set_data() result = self.compute(x, segment_ids) self.inputs = { 'X': x.astype(self.dtype), 'SegmentIds': segment_ids.astype(np.int64) } self.outputs = {'Out': result.astype(self.dtype)} def test_check_output(self): self.check_output(check_eager=False) def test_check_grad(self): self.check_grad(["X"], "Out", check_eager=False) class TestSegmentSum2(TestSegmentOps): def prepare(self): super(TestSegmentSum2, self).prepare() self.shape = [40, 20] self.dtype = np.float32 def setUp(self): self.prepare() x, segment_ids = self.set_data() result = self.compute(x, segment_ids) self.inputs = { 'X': x.astype(self.dtype), 'SegmentIds': segment_ids.astype(np.int32) } self.outputs = {'Out': result.astype(self.dtype)} class TestSegmentMax(TestSegmentOps): def compute(self, x, segment_ids): return compute_segment_min_max(x, segment_ids, pooltype="MAX") def prepare(self): super(TestSegmentMax, self).prepare() self.shape = [40, 20] self.attrs = {'pooltype': "MAX"} # self.python_api = paddle.incubate.segment_max def setUp(self): self.prepare() x, segment_ids = self.set_data() result, self.gradient = self.compute(x, segment_ids) self.inputs = { 'X': x.astype(self.dtype), 'SegmentIds': segment_ids.astype(np.int32) } self.outputs = {'Out': result.astype(self.dtype)} def test_check_grad(self): self.check_grad( ["X"], "Out", user_defined_grads=[self.gradient], check_eager=False) class TestSegmentMax2(TestSegmentMax): def prepare(self): super(TestSegmentMax2, self).prepare() self.dtype = np.float32 class TestSegmentMin(TestSegmentMax): def compute(self, x, segment_ids): return compute_segment_min_max(x, segment_ids, pooltype="MIN") def prepare(self): super(TestSegmentMin, self).prepare() self.attrs = {'pooltype': "MIN"} #self.python_api = paddle.incubate.segment_min class TestSegmentMin2(TestSegmentMin): def prepare(self): super(TestSegmentMin2, self).prepare() self.dtype = np.float32 class TestSegmentMean(TestSegmentOps): def compute(self, x, segment_ids): return compute_segment_mean(x, segment_ids) def prepare(self): super(TestSegmentMean, self).prepare() self.shape = [40, 20] self.attrs = {'pooltype': "MEAN"} #self.python_api = paddle.incubate.segment_mean def setUp(self): self.prepare() x, segment_ids = self.set_data() result = self.compute(x, segment_ids) self.inputs = {'X': x, 'SegmentIds': segment_ids} self.outputs = { 'Out': result, 'SummedIds': compute_segment_sum( np.ones([len(x), 1]).astype(self.dtype), segment_ids) } class TestSegmentMean2(TestSegmentMean): def prepare(self): super(TestSegmentMean2, self).prepare() self.dtype = np.float32 self.shape = [30, 20] self.attrs = {'pooltype': "MEAN"} #self.python_api = paddle.incubate.segment_mean class API_SegmentOpsTest(unittest.TestCase): def test_static(self): with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data(name="x", shape=[3, 3], dtype="float32") y = paddle.static.data(name='y', shape=[3], dtype='int32') res_sum = paddle.incubate.segment_sum(x, y) res_mean = paddle.incubate.segment_mean(x, y) res_max = paddle.incubate.segment_max(x, y) res_min = paddle.incubate.segment_min(x, y) exe = paddle.static.Executor(paddle.CPUPlace()) data1 = np.array([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') data2 = np.array([0, 0, 1], dtype="int32") np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float32") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float32") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float32") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float32") ret = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[res_sum, res_mean, res_max, res_min]) for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): self.assertTrue( np.allclose( np_res, ret_res, atol=1e-6), "two value is\ {}\n{}, check diff!".format(np_res, ret_res)) def test_dygraph(self): device = paddle.CPUPlace() with paddle.fluid.dygraph.guard(device): x = paddle.to_tensor( [[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') y = paddle.to_tensor([0, 0, 1], dtype="int32") res_sum = paddle.incubate.segment_sum(x, y) res_mean = paddle.incubate.segment_mean(x, y) res_max = paddle.incubate.segment_max(x, y) res_min = paddle.incubate.segment_min(x, y) np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float32") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float32") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float32") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float32") ret = [res_sum, res_mean, res_max, res_min] for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): self.assertTrue( np.allclose( np_res, ret_res.numpy(), atol=1e-6), "two value is\ {}\n{}, check diff!".format(np_res, ret_res)) if __name__ == '__main__': paddle.enable_static() unittest.main()