# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from dist_mnist import cnn_model # noqa: F401 from test_dist_base import dump_output import paddle from paddle import fluid from paddle.distributed.fleet.base import role_maker from paddle.distributed.fleet.meta_optimizers import sharding # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 def runtime_main(): from paddle.distributed import fleet # model definition train_prog = paddle.fluid.Program() startup_prog = paddle.fluid.Program() role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): input_x = paddle.static.data( name="x", shape=[-1, 32], dtype='float32' ) input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64') fc_1 = paddle.static.nn.fc(x=input_x, size=64, activation='tanh') fc_2 = paddle.static.nn.fc(x=fc_1, size=256, activation='tanh') prediction = paddle.static.nn.fc( x=[fc_2], size=2, activation='softmax' ) cost = paddle.nn.functional.cross_entropy( input=prediction, label=input_y, reduction='none', use_softmax=False, ) avg_cost = paddle.mean(x=cost) strategy = paddle.distributed.fleet.DistributedStrategy() strategy.sharding = True strategy.sharding_configs = { "sharding_segment_strategy": "segment_broadcast_MB", "segment_broadcast_MB": 0.2, "sharding_degree": 2, } optimizer = paddle.fluid.optimizer.Momentum( learning_rate=0.01, momentum=0.9 ) optimizer = fleet.distributed_optimizer( optimizer, strategy=strategy ) optimizer.minimize(avg_cost) # execution device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace(device_id) exe = fluid.Executor(place) exe.run(startup_prog) dirname = "./ut_sharding_save_model" sharding.utils.save_persistables( exe, dirname, main_program=train_prog, filename=None ) out_losses = [] dump_output(out_losses) if __name__ == "__main__": # NOTE(liangjianzhong): dist unittest should be implemented using runtime_main in test_dist_base.py # but the runtime_main in test_dist_base.py use the fleet, DistributedStrategy from # paddle.incubate.distributed.fleet.collective which is not support by sharding (paddle.distributed.fleet). # this should be update in future. # runtime_main(TestDistMnist2x2) runtime_main()