# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from test_sum_op import TestReduceOPTensorAxisBase import paddle class TestProdOp(unittest.TestCase): def setUp(self): self.input = np.random.random(size=(10, 10, 5)).astype(np.float32) def run_imperative(self): input = paddle.to_tensor(self.input) dy_result = paddle.prod(input) expected_result = np.prod(self.input) np.testing.assert_allclose( dy_result.numpy(), expected_result, rtol=1e-05 ) dy_result = paddle.prod(input, axis=1) expected_result = np.prod(self.input, axis=1) np.testing.assert_allclose( dy_result.numpy(), expected_result, rtol=1e-05 ) dy_result = paddle.prod(input, axis=-1) expected_result = np.prod(self.input, axis=-1) np.testing.assert_allclose( dy_result.numpy(), expected_result, rtol=1e-05 ) dy_result = paddle.prod(input, axis=[0, 1]) expected_result = np.prod(self.input, axis=(0, 1)) np.testing.assert_allclose( dy_result.numpy(), expected_result, rtol=1e-05, atol=1e-8 ) dy_result = paddle.prod(input, axis=1, keepdim=True) expected_result = np.prod(self.input, axis=1, keepdims=True) np.testing.assert_allclose( dy_result.numpy(), expected_result, rtol=1e-05 ) dy_result = paddle.prod(input, axis=1, dtype='int64') expected_result = np.prod(self.input, axis=1, dtype=np.int64) np.testing.assert_allclose( dy_result.numpy(), expected_result, rtol=1e-05 ) dy_result = paddle.prod(input, axis=1, keepdim=True, dtype='int64') expected_result = np.prod( self.input, axis=1, keepdims=True, dtype=np.int64 ) np.testing.assert_allclose( dy_result.numpy(), expected_result, rtol=1e-05 ) def run_static(self, use_gpu=False): input = paddle.static.data( name='input', shape=[10, 10, 5], dtype='float32' ) result0 = paddle.prod(input) result1 = paddle.prod(input, axis=1) result2 = paddle.prod(input, axis=-1) result3 = paddle.prod(input, axis=[0, 1]) result4 = paddle.prod(input, axis=1, keepdim=True) result5 = paddle.prod(input, axis=1, dtype='int64') result6 = paddle.prod(input, axis=1, keepdim=True, dtype='int64') place = paddle.CUDAPlace(0) if use_gpu else paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) static_result = exe.run( feed={"input": self.input}, fetch_list=[ result0, result1, result2, result3, result4, result5, result6, ], ) expected_result = np.prod(self.input) np.testing.assert_allclose( static_result[0], expected_result, rtol=1e-05 ) expected_result = np.prod(self.input, axis=1) np.testing.assert_allclose( static_result[1], expected_result, rtol=1e-05 ) expected_result = np.prod(self.input, axis=-1) np.testing.assert_allclose( static_result[2], expected_result, rtol=1e-05 ) expected_result = np.prod(self.input, axis=(0, 1)) np.testing.assert_allclose( static_result[3], expected_result, rtol=1e-05, atol=1e-8 ) expected_result = np.prod(self.input, axis=1, keepdims=True) np.testing.assert_allclose( static_result[4], expected_result, rtol=1e-05 ) expected_result = np.prod(self.input, axis=1, dtype=np.int64) np.testing.assert_allclose( static_result[5], expected_result, rtol=1e-05 ) expected_result = np.prod( self.input, axis=1, keepdims=True, dtype=np.int64 ) np.testing.assert_allclose( static_result[6], expected_result, rtol=1e-05 ) def test_cpu(self): paddle.disable_static(place=paddle.CPUPlace()) self.run_imperative() paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): self.run_static() def test_gpu(self): if not paddle.fluid.core.is_compiled_with_cuda(): return paddle.disable_static(place=paddle.CUDAPlace(0)) self.run_imperative() paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): self.run_static(use_gpu=True) class TestProdOpError(unittest.TestCase): def test_error(self): with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.static.data(name='x', shape=[2, 2, 4], dtype='float32') bool_x = paddle.static.data( name='bool_x', shape=[2, 2, 4], dtype='bool' ) # The argument x shoule be a Tensor self.assertRaises(TypeError, paddle.prod, [1]) # The data type of x should be float32, float64, int32, int64 self.assertRaises(TypeError, paddle.prod, bool_x) # The argument axis's type shoule be int ,list or tuple self.assertRaises(TypeError, paddle.prod, x, 1.5) # The argument dtype of prod_op should be float32, float64, int32 or int64. self.assertRaises(TypeError, paddle.prod, x, 'bool') class TestProdWithTensorAxis1(TestReduceOPTensorAxisBase): def init_data(self): self.pd_api = paddle.prod self.np_api = np.prod self.x = paddle.randn([10, 5, 9, 9], dtype='float64') self.np_axis = np.array([1, 2], dtype='int64') self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64') class TestProdWithTensorAxis2(TestReduceOPTensorAxisBase): def init_data(self): self.pd_api = paddle.prod self.np_api = np.prod self.x = paddle.randn([10, 10, 9, 9], dtype='float64') self.np_axis = np.array([0, 1, 2], dtype='int64') self.tensor_axis = [ 0, paddle.to_tensor([1], 'int64'), paddle.to_tensor([2], 'int64'), ] if __name__ == "__main__": unittest.main()