# copyright (c) 2020 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import argparse import logging import os import sys import time import unittest import numpy as np import paddle from paddle.fluid.framework import IrGraph from paddle.framework import core from paddle.static.quantization import Quant2Int8MkldnnPass paddle.enable_static() logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s') _logger = logging.getLogger(__name__) _logger.setLevel(logging.INFO) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=1, help='Batch size.') parser.add_argument( '--skip_batch_num', type=int, default=0, help='Number of the first minibatches to skip in performance statistics.', ) parser.add_argument( '--quant_model', type=str, default='', help='A path to a Quant model.' ) parser.add_argument( '--fp32_model', type=str, default='', help='A path to an FP32 model. If empty, the Quant model will be used for FP32 inference.', ) parser.add_argument('--infer_data', type=str, default='', help='Data file.') parser.add_argument( '--labels', type=str, default='', help='File with labels.' ) parser.add_argument( '--batch_num', type=int, default=0, help='Number of batches to process. 0 or less means whole dataset. Default: 0.', ) parser.add_argument( '--acc_diff_threshold', type=float, default=0.01, help='Accepted accuracy difference threshold.', ) parser.add_argument( '--ops_to_quantize', type=str, default='', help='A comma separated list of operators to quantize. Only quantizable operators are taken into account. If the option is not used, an attempt to quantize all quantizable operators will be made.', ) parser.add_argument( '--op_ids_to_skip', type=str, default='', help='A comma separated list of operator ids to skip in quantization.', ) parser.add_argument( '--targets', type=str, default='quant,int8,fp32', help='A comma separated list of inference types to run ("int8", "fp32", "quant"). Default: "quant,int8,fp32"', ) parser.add_argument( '--debug', action='store_true', help='If used, the graph of Quant model is drawn.', ) test_args, args = parser.parse_known_args(namespace=unittest) return test_args, sys.argv[:1] + args class QuantInt8NLPComparisonTest(unittest.TestCase): """ Test for accuracy comparison of Quant FP32 and INT8 NLP inference. """ def _reader_creator(self, data_file=None, labels_file=None): assert data_file, "The dataset file is missing." assert labels_file, "The labels file is missing." def reader(): with open(data_file, 'r') as df: with open(labels_file, 'r') as lf: data_lines = df.readlines() labels_lines = lf.readlines() assert len(data_lines) == len( labels_lines ), "The number of labels does not match the length of the dataset." for i in range(len(data_lines)): data_fields = data_lines[i].split(';') assert ( len(data_fields) >= 2 ), "The number of data fields in the dataset is less than 2" buffers = [] shape = [] for j in range(2): data = data_fields[j].split(':') assert ( len(data) >= 2 ), "Size of data in the dataset is less than 2" # Shape is stored under index 0, while data under 1 shape = data[0].split() shape.pop(0) shape_np = np.array(shape).astype("int64") buffer_i = data[1].split() buffer_np = np.array(buffer_i).astype("int64") buffer_np.shape = tuple(shape_np) buffers.append(buffer_np) label = labels_lines[i] yield buffers[0], buffers[1], int(label) return reader def _get_batch_correct(self, batch_output=None, labels=None): total = len(batch_output) assert total > 0, "The batch output is empty." correct = 0 for n, output in enumerate(batch_output[0]): max_idx = np.where(output == output.max()) if max_idx == labels[n]: correct += 1 return correct def _predict( self, test_reader=None, model_path=None, batch_size=1, batch_num=1, skip_batch_num=0, target='quant', ): assert target in ['quant', 'int8', 'fp32'] place = paddle.CPUPlace() exe = paddle.static.Executor(place) inference_scope = paddle.static.global_scope() with paddle.static.scope_guard(inference_scope): if os.path.exists(os.path.join(model_path, '__model__')): [ inference_program, feed_target_names, fetch_targets, ] = paddle.fluid.io.load_inference_model(model_path, exe) else: [ inference_program, feed_target_names, fetch_targets, ] = paddle.static.load_inference_model( model_path, exe, model_filename='model', params_filename='params', ) graph = IrGraph(core.Graph(inference_program.desc), for_test=True) if self._debug: graph.draw('.', 'quant_orig', graph.all_op_nodes()) if target != 'quant': quant_transform_pass = Quant2Int8MkldnnPass( self._quantized_ops, _op_ids_to_skip=self._op_ids_to_skip, _scope=inference_scope, _place=place, _core=core, _debug=self._debug, ) if target == 'int8': graph = quant_transform_pass.apply(graph) else: # target == fp32 graph = quant_transform_pass.prepare_and_optimize_fp32( graph ) inference_program = graph.to_program() total_correct = 0 total_samples = 0 batch_times = [] ppses = [] # predictions per second iters = 0 infer_start_time = time.time() for data in test_reader(): if batch_num > 0 and iters >= batch_num: break if iters == skip_batch_num: total_samples = 0 infer_start_time = time.time() input0 = np.array([x[0] for x in data]).astype('int64') input1 = np.array([x[1] for x in data]).astype('int64') labels = np.array([x[2] for x in data]).astype('int64') start = time.time() out = exe.run( inference_program, feed={ feed_target_names[0]: input0, feed_target_names[1]: input1, }, fetch_list=fetch_targets, ) batch_time = (time.time() - start) * 1000 # in miliseconds batch_times.append(batch_time) batch_correct = self._get_batch_correct(out, labels) batch_len = len(data) total_samples += batch_len total_correct += batch_correct batch_acc = float(batch_correct) / float(batch_len) pps = batch_len / batch_time * 1000 ppses.append(pps) latency = batch_time / batch_len iters += 1 appx = ' (warm-up)' if iters <= skip_batch_num else '' _logger.info( 'batch {0}{4}, acc: {1:.4f}, latency: {2:.4f} ms, predictions per sec: {3:.2f}'.format( iters, batch_acc, latency, pps, appx ) ) # Postprocess benchmark data infer_total_time = time.time() - infer_start_time batch_latencies = batch_times[skip_batch_num:] batch_latency_avg = np.average(batch_latencies) latency_avg = batch_latency_avg / batch_size ppses = ppses[skip_batch_num:] pps_avg = np.average(ppses) acc_avg = float(np.sum(total_correct)) / float(total_samples) _logger.info( 'Total inference run time: {:.2f} s'.format(infer_total_time) ) return acc_avg, pps_avg, latency_avg def _print_performance(self, title, pps, lat): _logger.info( '{0}: avg predictions per sec: {1:.2f}, avg latency: {2:.4f} ms'.format( title, pps, lat ) ) def _print_accuracy(self, title, acc): _logger.info('{0}: avg accuracy: {1:.6f}'.format(title, acc)) def _summarize_performance(self, int8_pps, int8_lat, fp32_pps, fp32_lat): _logger.info('--- Performance summary ---') self._print_performance('INT8', int8_pps, int8_lat) if fp32_lat >= 0: self._print_performance('FP32', fp32_pps, fp32_lat) def _summarize_accuracy(self, quant_acc, int8_acc, fp32_acc): _logger.info('--- Accuracy summary ---') self._print_accuracy('Quant', quant_acc) self._print_accuracy('INT8', int8_acc) if fp32_acc >= 0: self._print_accuracy('FP32', fp32_acc) def _compare_accuracy(self, threshold, quant_acc, int8_acc): _logger.info( 'Accepted accuracy drop threshold: {0}. (condition: (Quant_acc - INT8_acc) <= threshold)'.format( threshold ) ) # Random outputs give accuracy about 0.33, we assume valid accuracy to be at least 0.5 assert quant_acc > 0.5 assert int8_acc > 0.5 assert quant_acc - int8_acc <= threshold def _strings_from_csv(self, string): return set(s.strip() for s in string.split(',')) def _ints_from_csv(self, string): return set(map(int, string.split(','))) def test_graph_transformation(self): if not core.is_compiled_with_mkldnn(): return quant_model_path = test_case_args.quant_model assert ( quant_model_path ), 'The Quant model path cannot be empty. Please, use the --quant_model option.' data_path = test_case_args.infer_data assert ( data_path ), 'The dataset path cannot be empty. Please, use the --infer_data option.' fp32_model_path = test_case_args.fp32_model labels_path = test_case_args.labels batch_size = test_case_args.batch_size batch_num = test_case_args.batch_num skip_batch_num = test_case_args.skip_batch_num acc_diff_threshold = test_case_args.acc_diff_threshold self._debug = test_case_args.debug self._quantized_ops = set() if test_case_args.ops_to_quantize: self._quantized_ops = self._strings_from_csv( test_case_args.ops_to_quantize ) self._op_ids_to_skip = set([-1]) if test_case_args.op_ids_to_skip: self._op_ids_to_skip = self._ints_from_csv( test_case_args.op_ids_to_skip ) self._targets = self._strings_from_csv(test_case_args.targets) assert self._targets.intersection( {'quant', 'int8', 'fp32'} ), 'The --targets option, if used, must contain at least one of the targets: "quant", "int8", "fp32".' _logger.info('Quant & INT8 prediction run.') _logger.info('Quant model: {}'.format(quant_model_path)) if fp32_model_path: _logger.info('FP32 model: {}'.format(fp32_model_path)) _logger.info('Dataset: {}'.format(data_path)) _logger.info('Labels: {}'.format(labels_path)) _logger.info('Batch size: {}'.format(batch_size)) _logger.info('Batch number: {}'.format(batch_num)) _logger.info('Accuracy drop threshold: {}.'.format(acc_diff_threshold)) _logger.info( 'Quantized ops: {}.'.format( ','.join(self._quantized_ops) if self._quantized_ops else 'all quantizable' ) ) _logger.info( 'Op ids to skip quantization: {}.'.format( ','.join(map(str, self._op_ids_to_skip)) if test_case_args.op_ids_to_skip else 'none' ) ) _logger.info('Targets: {}.'.format(','.join(self._targets))) if 'quant' in self._targets: _logger.info('--- Quant prediction start ---') val_reader = paddle.batch( self._reader_creator(data_path, labels_path), batch_size=batch_size, ) quant_acc, quant_pps, quant_lat = self._predict( val_reader, quant_model_path, batch_size, batch_num, skip_batch_num, target='quant', ) self._print_performance('Quant', quant_pps, quant_lat) self._print_accuracy('Quant', quant_acc) if 'int8' in self._targets: _logger.info('--- INT8 prediction start ---') val_reader = paddle.batch( self._reader_creator(data_path, labels_path), batch_size=batch_size, ) int8_acc, int8_pps, int8_lat = self._predict( val_reader, quant_model_path, batch_size, batch_num, skip_batch_num, target='int8', ) self._print_performance('INT8', int8_pps, int8_lat) self._print_accuracy('INT8', int8_acc) fp32_acc = fp32_pps = fp32_lat = -1 if 'fp32' in self._targets and fp32_model_path: _logger.info('--- FP32 prediction start ---') val_reader = paddle.batch( self._reader_creator(data_path, labels_path), batch_size=batch_size, ) fp32_acc, fp32_pps, fp32_lat = self._predict( val_reader, fp32_model_path, batch_size, batch_num, skip_batch_num, target='fp32', ) self._print_performance('FP32', fp32_pps, fp32_lat) self._print_accuracy('FP32', fp32_acc) if {'int8', 'fp32'}.issubset(self._targets): self._summarize_performance(int8_pps, int8_lat, fp32_pps, fp32_lat) if {'int8', 'quant'}.issubset(self._targets): self._summarize_accuracy(quant_acc, int8_acc, fp32_acc) self._compare_accuracy(acc_diff_threshold, quant_acc, int8_acc) if __name__ == '__main__': global test_case_args test_case_args, remaining_args = parse_args() unittest.main(argv=remaining_args)