# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import os import sys import six import paddle import paddle.nn as nn import paddle.optimizer as opt import paddle.fluid as fluid from paddle.fluid.optimizer import Adam import paddle.fluid.framework as framework from test_imperative_base import new_program_scope from paddle.optimizer.lr import LRScheduler BATCH_SIZE = 16 BATCH_NUM = 4 EPOCH_NUM = 4 SEED = 10 IMAGE_SIZE = 784 CLASS_NUM = 10 if six.PY2: LARGE_PARAM = 2**2 else: LARGE_PARAM = 2**26 def random_batch_reader(): def _get_random_inputs_and_labels(): np.random.seed(SEED) image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32') label = np.random.randint(0, CLASS_NUM - 1, ( BATCH_SIZE, 1, )).astype('int64') return image, label def __reader__(): for _ in range(BATCH_NUM): batch_image, batch_label = _get_random_inputs_and_labels() batch_image = paddle.to_tensor(batch_image) batch_label = paddle.to_tensor(batch_label) yield batch_image, batch_label return __reader__ class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM) def forward(self, x): return self._linear(x) class LayerWithLargeParameters(paddle.nn.Layer): def __init__(self): super(LayerWithLargeParameters, self).__init__() self._l = paddle.nn.Linear(10, LARGE_PARAM) def forward(self, x): y = self._l(x) return y def train(layer, loader, loss_fn, opt): for epoch_id in range(EPOCH_NUM): for batch_id, (image, label) in enumerate(loader()): out = layer(image) loss = loss_fn(out, label) loss.backward() opt.step() opt.clear_grad() class TestSaveLoadLargeParameters(unittest.TestCase): def setUp(self): pass def test_large_parameters_paddle_save(self): # enable dygraph mode paddle.disable_static() # create network layer = LayerWithLargeParameters() save_dict = layer.state_dict() path = os.path.join("test_paddle_save_load_large_param_save", "layer.pdparams") if six.PY2: protocol = 2 else: protocol = 4 paddle.save(save_dict, path, protocol=protocol) dict_load = paddle.load(path) # compare results before and after saving for key, value in save_dict.items(): self.assertTrue( np.array_equal(dict_load[key].numpy(), value.numpy())) class TestSaveLoadPickle(unittest.TestCase): def test_pickle_protocol(self): # enable dygraph mode paddle.disable_static() # create network layer = LinearNet() save_dict = layer.state_dict() path = os.path.join("test_paddle_save_load_pickle_protocol", "layer.pdparams") with self.assertRaises(ValueError): paddle.save(save_dict, path, 2.0) with self.assertRaises(ValueError): paddle.save(save_dict, path, 1) with self.assertRaises(ValueError): paddle.save(save_dict, path, 5) protocols = [2, ] if sys.version_info.major >= 3 and sys.version_info.minor >= 4: protocols += [3, 4] for protocol in protocols: paddle.save(save_dict, path, pickle_protocol=protocol) dict_load = paddle.load(path) # compare results before and after saving for key, value in save_dict.items(): self.assertTrue( np.array_equal(dict_load[key].numpy(), value.numpy())) class TestSaveLoadAny(unittest.TestCase): def set_zero(self, prog, place, scope=None): if scope is None: scope = fluid.global_scope() for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: ten = scope.find_var(var.name).get_tensor() if ten is not None: ten.set(np.zeros_like(np.array(ten)), place) new_t = np.array(scope.find_var(var.name).get_tensor()) self.assertTrue(np.sum(np.abs(new_t)) == 0) def replace_static_save(self, program, model_path, pickle_protocol=2): with self.assertRaises(TypeError): program.state_dict(1) with self.assertRaises(TypeError): program.state_dict(scope=1) with self.assertRaises(ValueError): program.state_dict('x') state_dict_param = program.state_dict('param') paddle.save(state_dict_param, model_path + '.pdparams') state_dict_opt = program.state_dict('opt') paddle.save(state_dict_opt, model_path + '.pdopt') state_dict_all = program.state_dict() paddle.save(state_dict_opt, model_path + '.pdall') def replace_static_load(self, program, model_path): with self.assertRaises(TypeError): program.set_state_dict(1) state_dict_param = paddle.load(model_path + '.pdparams') state_dict_param['fake_var_name.@@'] = np.random.randn(1, 2) state_dict_param['static_x'] = 'UserWarning' program.set_state_dict(state_dict_param) state_dict_param['static_x'] = np.random.randn(1, 2) program.set_state_dict(state_dict_param) program.set_state_dict(state_dict_param) state_dict_opt = paddle.load(model_path + '.pdopt') program.set_state_dict(state_dict_opt) def test_replace_static_save_load(self): paddle.enable_static() with new_program_scope(): x = paddle.static.data( name="static_x", shape=[None, IMAGE_SIZE], dtype='float32') z = paddle.static.nn.fc(x, 10) z = paddle.static.nn.fc(z, 10, bias_attr=False) loss = fluid.layers.reduce_mean(z) opt = Adam(learning_rate=1e-3) opt.minimize(loss) place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) prog = paddle.static.default_main_program() fake_inputs = np.random.randn(2, IMAGE_SIZE).astype('float32') exe.run(prog, feed={'static_x': fake_inputs}, fetch_list=[loss]) base_map = {} for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_map[var.name] = t path = os.path.join("test_replace_static_save_load", "model") # paddle.save, legacy paddle.fluid.load self.replace_static_save(prog, path) self.set_zero(prog, place) paddle.fluid.io.load(prog, path) for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: new_t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_t = base_map[var.name] self.assertTrue(np.array_equal(new_t, np.array(base_t))) # legacy paddle.fluid.save, paddle.load paddle.fluid.io.save(prog, path) self.set_zero(prog, place) self.replace_static_load(prog, path) for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: new_t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_t = base_map[var.name] self.assertTrue(np.array_equal(new_t, base_t)) # test for return tensor path_vars = 'test_replace_save_load_return_tensor_static/model' for var in prog.list_vars(): if var.persistable: tensor = var.get_value(fluid.global_scope()) paddle.save(tensor, os.path.join(path_vars, var.name)) with self.assertRaises(TypeError): var.get_value('fluid.global_scope()') with self.assertRaises(ValueError): x.get_value() with self.assertRaises(TypeError): x.set_value('1') fake_data = np.zeros([3, 2, 1, 2, 3]) with self.assertRaises(TypeError): x.set_value(fake_data, '1') with self.assertRaises(ValueError): x.set_value(fake_data) with self.assertRaises(ValueError): var.set_value(fake_data) # set var to zero self.set_zero(prog, place) for var in prog.list_vars(): if var.persistable: tensor = paddle.load( os.path.join(path_vars, var.name), return_numpy=False) var.set_value(tensor) new_t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_t = base_map[var.name] self.assertTrue(np.array_equal(new_t, base_t)) def test_paddle_save_load_v2(self): paddle.disable_static() class StepDecay(LRScheduler): def __init__(self, learning_rate, step_size, gamma=0.1, last_epoch=-1, verbose=False): self.step_size = step_size self.gamma = gamma super(StepDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): i = self.last_epoch // self.step_size return self.base_lr * (self.gamma**i) layer = LinearNet() inps = paddle.randn([2, IMAGE_SIZE]) adam = opt.Adam( learning_rate=StepDecay(0.1, 1), parameters=layer.parameters()) y = layer(inps) y.mean().backward() adam.step() state_dict = adam.state_dict() path = 'paddle_save_load_v2/model.pdparams' with self.assertRaises(TypeError): paddle.save(state_dict, path, use_binary_format='False') # legacy paddle.save, paddle.load paddle.framework.io._legacy_save(state_dict, path) load_dict_tensor = paddle.load(path, return_numpy=False) # legacy paddle.load, paddle.save paddle.save(state_dict, path) load_dict_np = paddle.framework.io._legacy_load(path) for k, v in state_dict.items(): if isinstance(v, dict): self.assertTrue(v == load_dict_tensor[k]) else: self.assertTrue( np.array_equal(v.numpy(), load_dict_tensor[k].numpy())) if not np.array_equal(v.numpy(), load_dict_np[k]): print(v.numpy()) print(load_dict_np[k]) self.assertTrue(np.array_equal(v.numpy(), load_dict_np[k])) def test_single_pickle_var_dygraph(self): # enable dygraph mode paddle.disable_static() layer = LinearNet() path = 'paddle_save_load_v2/var_dygraph' tensor = layer._linear.weight with self.assertRaises(ValueError): paddle.save(tensor, path, pickle_protocol='3') with self.assertRaises(ValueError): paddle.save(tensor, path, pickle_protocol=5) paddle.save(tensor, path) t_dygraph = paddle.load(path) np_dygraph = paddle.load(path, return_numpy=True) self.assertTrue(isinstance(t_dygraph, paddle.fluid.core.VarBase)) self.assertTrue(np.array_equal(tensor.numpy(), np_dygraph)) self.assertTrue(np.array_equal(tensor.numpy(), t_dygraph.numpy())) paddle.enable_static() lod_static = paddle.load(path) np_static = paddle.load(path, return_numpy=True) self.assertTrue(isinstance(lod_static, paddle.fluid.core.LoDTensor)) self.assertTrue(np.array_equal(tensor.numpy(), np_static)) self.assertTrue(np.array_equal(tensor.numpy(), np.array(lod_static))) def test_single_pickle_var_static(self): # enable static mode paddle.enable_static() with new_program_scope(): # create network x = paddle.static.data( name="x", shape=[None, IMAGE_SIZE], dtype='float32') z = paddle.static.nn.fc(x, 128) loss = fluid.layers.reduce_mean(z) place = fluid.CPUPlace( ) if not paddle.fluid.core.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) prog = paddle.static.default_main_program() for var in prog.list_vars(): if list(var.shape) == [IMAGE_SIZE, 128]: tensor = var.get_value() break scope = fluid.global_scope() origin_tensor = np.array(tensor) path = 'test_single_pickle_var_static/var' paddle.save(tensor, path) self.set_zero(prog, place, scope) # static load lod_static = paddle.load(path) np_static = paddle.load(path, return_numpy=True) # set_tensor(np.ndarray) var.set_value(np_static, scope) self.assertTrue(np.array_equal(origin_tensor, np.array(tensor))) # set_tensor(LoDTensor) self.set_zero(prog, place, scope) var.set_value(lod_static, scope) self.assertTrue(np.array_equal(origin_tensor, np.array(tensor))) # enable dygraph mode paddle.disable_static() var_dygraph = paddle.load(path) np_dygraph = paddle.load(path, return_numpy=True) self.assertTrue(np.array_equal(np.array(tensor), np_dygraph)) self.assertTrue(np.array_equal(np.array(tensor), var_dygraph.numpy())) def test_dygraph_save_static_load(self): inps = np.random.randn(1, IMAGE_SIZE).astype('float32') path = 'test_dygraph_save_static_load/dy-static.pdparams' paddle.disable_static() with paddle.utils.unique_name.guard(): layer = LinearNet() state_dict_dy = layer.state_dict() paddle.save(state_dict_dy, path) paddle.enable_static() with new_program_scope(): layer = LinearNet() data = paddle.static.data( name='x_static_save', shape=(None, IMAGE_SIZE), dtype='float32') y_static = layer(data) program = paddle.static.default_main_program() place = fluid.CPUPlace( ) if not paddle.fluid.core.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) exe = paddle.static.Executor(paddle.CPUPlace()) exe.run(paddle.static.default_startup_program()) state_dict = paddle.load(path, keep_name_table=True) program.set_state_dict(state_dict) state_dict_param = program.state_dict("param") for name, tensor in state_dict_dy.items(): self.assertTrue( np.array_equal(tensor.numpy(), np.array(state_dict_param[tensor.name]))) def test_save_load_complex_object_dygraph_save(self): paddle.disable_static() layer = paddle.nn.Linear(3, 4) state_dict = layer.state_dict() obj1 = [ paddle.randn( [3, 4], dtype='float32'), np.random.randn(5, 6), ('fake_weight', np.ones( [7, 8], dtype='float32')) ] obj2 = {'k1': obj1, 'k2': state_dict, 'epoch': 123} obj3 = (paddle.randn( [5, 4], dtype='float32'), np.ndarray( [3, 4], dtype="float32"), { "state_dict": state_dict, "opt": state_dict }) obj4 = (np.random.randn(5, 6), (123, )) path1 = "test_save_load_any_complex_object_dygraph/obj1" path2 = "test_save_load_any_complex_object_dygraph/obj2" path3 = "test_save_load_any_complex_object_dygraph/obj3" path4 = "test_save_load_any_complex_object_dygraph/obj4" paddle.save(obj1, path1) paddle.save(obj2, path2) paddle.save(obj3, path3) paddle.save(obj4, path4) load_tensor1 = paddle.load(path1, return_numpy=False) load_tensor2 = paddle.load(path2, return_numpy=False) load_tensor3 = paddle.load(path3, return_numpy=False) load_tensor4 = paddle.load(path4, return_numpy=False) self.assertTrue( np.array_equal(load_tensor1[0].numpy(), obj1[0].numpy())) self.assertTrue(np.array_equal(load_tensor1[1], obj1[1])) self.assertTrue(np.array_equal(load_tensor1[2].numpy(), obj1[2][1])) for i in range(len(load_tensor1)): self.assertTrue( type(load_tensor1[i]) == type(load_tensor2['k1'][i])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(v.numpy(), load_tensor2['k2'][k].numpy())) self.assertTrue(load_tensor2['epoch'] == 123) self.assertTrue( np.array_equal(load_tensor3[0].numpy(), obj3[0].numpy())) self.assertTrue(np.array_equal(np.array(load_tensor3[1]), obj3[1])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_tensor3[2]["state_dict"][k].numpy(), v.numpy())) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_tensor3[2]["opt"][k].numpy(), v.numpy())) self.assertTrue(np.array_equal(load_tensor4[0].numpy(), obj4[0])) load_array1 = paddle.load(path1, return_numpy=True) load_array2 = paddle.load(path2, return_numpy=True) load_array3 = paddle.load(path3, return_numpy=True) load_array4 = paddle.load(path4, return_numpy=True) self.assertTrue(np.array_equal(load_array1[0], obj1[0].numpy())) self.assertTrue(np.array_equal(load_array1[1], obj1[1])) self.assertTrue(np.array_equal(load_array1[2], obj1[2][1])) for i in range(len(load_array1)): self.assertTrue(type(load_array1[i]) == type(load_array2['k1'][i])) for k, v in state_dict.items(): self.assertTrue(np.array_equal(v.numpy(), load_array2['k2'][k])) self.assertTrue(load_array2['epoch'] == 123) self.assertTrue(np.array_equal(load_array3[0], obj3[0].numpy())) self.assertTrue(np.array_equal(load_array3[1], obj3[1])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_array3[2]["state_dict"][k], v.numpy())) for k, v in state_dict.items(): self.assertTrue(np.array_equal(load_array3[2]["opt"][k], v.numpy())) self.assertTrue(np.array_equal(load_array4[0], obj4[0])) # static mode paddle.enable_static() load_tensor1 = paddle.load(path1, return_numpy=False) load_tensor2 = paddle.load(path2, return_numpy=False) load_tensor3 = paddle.load(path3, return_numpy=False) load_tensor4 = paddle.load(path4, return_numpy=False) self.assertTrue( np.array_equal(np.array(load_tensor1[0]), obj1[0].numpy())) self.assertTrue(np.array_equal(np.array(load_tensor1[1]), obj1[1])) self.assertTrue(np.array_equal(np.array(load_tensor1[2]), obj1[2][1])) for i in range(len(load_tensor1)): self.assertTrue( type(load_tensor1[i]) == type(load_tensor2['k1'][i])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(v.numpy(), np.array(load_tensor2['k2'][k]))) self.assertTrue(load_tensor2['epoch'] == 123) self.assertTrue( isinstance(load_tensor3[0], paddle.fluid.core.LoDTensor)) self.assertTrue( np.array_equal(np.array(load_tensor3[0]), obj3[0].numpy())) self.assertTrue(np.array_equal(np.array(load_tensor3[1]), obj3[1])) for k, v in state_dict.items(): self.assertTrue( isinstance(load_tensor3[2]["state_dict"][k], paddle.fluid.core.LoDTensor)) self.assertTrue( np.array_equal( np.array(load_tensor3[2]["state_dict"][k]), v.numpy())) for k, v in state_dict.items(): self.assertTrue( isinstance(load_tensor3[2]["opt"][k], paddle.fluid.core.LoDTensor)) self.assertTrue( np.array_equal(np.array(load_tensor3[2]["opt"][k]), v.numpy())) self.assertTrue(load_tensor4[0], paddle.fluid.core.LoDTensor) self.assertTrue(np.array_equal(np.array(load_tensor4[0]), obj4[0])) load_array1 = paddle.load(path1, return_numpy=True) load_array2 = paddle.load(path2, return_numpy=True) load_array3 = paddle.load(path3, return_numpy=True) load_array4 = paddle.load(path4, return_numpy=True) self.assertTrue(np.array_equal(load_array1[0], obj1[0].numpy())) self.assertTrue(np.array_equal(load_array1[1], obj1[1])) self.assertTrue(np.array_equal(load_array1[2], obj1[2][1])) for i in range(len(load_array1)): self.assertTrue(type(load_array1[i]) == type(load_array2['k1'][i])) for k, v in state_dict.items(): self.assertTrue(np.array_equal(v.numpy(), load_array2['k2'][k])) self.assertTrue(load_array2['epoch'] == 123) self.assertTrue(isinstance(load_array3[0], np.ndarray)) self.assertTrue(np.array_equal(load_array3[0], obj3[0].numpy())) self.assertTrue(np.array_equal(load_array3[1], obj3[1])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_array3[2]["state_dict"][k], v.numpy())) for k, v in state_dict.items(): self.assertTrue(np.array_equal(load_array3[2]["opt"][k], v.numpy())) self.assertTrue(np.array_equal(load_array4[0], obj4[0])) def test_save_load_complex_object_static_save(self): paddle.enable_static() with new_program_scope(): # create network x = paddle.static.data( name="x", shape=[None, IMAGE_SIZE], dtype='float32') z = paddle.static.nn.fc(x, 10, bias_attr=False) z = paddle.static.nn.fc(z, 128, bias_attr=False) loss = fluid.layers.reduce_mean(z) place = fluid.CPUPlace( ) if not paddle.fluid.core.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) prog = paddle.static.default_main_program() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) state_dict = prog.state_dict() keys = list(state_dict.keys()) obj1 = [ state_dict[keys[0]], np.random.randn(5, 6), ('fake_weight', np.ones( [7, 8], dtype='float32')) ] obj2 = {'k1': obj1, 'k2': state_dict, 'epoch': 123} obj3 = (state_dict[keys[0]], np.ndarray( [3, 4], dtype="float32"), { "state_dict": state_dict, "opt": state_dict }) obj4 = (np.ndarray([3, 4], dtype="float32"), ) path1 = "test_save_load_any_complex_object_static/obj1" path2 = "test_save_load_any_complex_object_static/obj2" path3 = "test_save_load_any_complex_object_static/obj3" path4 = "test_save_load_any_complex_object_static/obj4" paddle.save(obj1, path1) paddle.save(obj2, path2) paddle.save(obj3, path3) paddle.save(obj4, path4) load_tensor1 = paddle.load(path1, return_numpy=False) load_tensor2 = paddle.load(path2, return_numpy=False) load_tensor3 = paddle.load(path3, return_numpy=False) load_tensor4 = paddle.load(path4, return_numpy=False) self.assertTrue( np.array_equal(np.array(load_tensor1[0]), np.array(obj1[0]))) self.assertTrue(np.array_equal(np.array(load_tensor1[1]), obj1[1])) self.assertTrue( np.array_equal(np.array(load_tensor1[2]), obj1[2][1])) for i in range(len(load_tensor1)): self.assertTrue( type(load_tensor1[i]) == type(load_tensor2['k1'][i])) for k, v in state_dict.items(): self.assertTrue( np.array_equal( np.array(v), np.array(load_tensor2['k2'][k]))) self.assertTrue(load_tensor2['epoch'] == 123) self.assertTrue(isinstance(load_tensor3[0], fluid.core.LoDTensor)) self.assertTrue(np.array_equal(np.array(load_tensor3[0]), obj3[0])) self.assertTrue(isinstance(load_tensor3[1], fluid.core.LoDTensor)) self.assertTrue(np.array_equal(np.array(load_tensor3[1]), obj3[1])) for k, v in state_dict.items(): self.assertTrue( isinstance(load_tensor3[2]["state_dict"][k], fluid.core.LoDTensor)) self.assertTrue( np.array_equal( np.array(load_tensor3[2]["state_dict"][k]), np.array( v))) for k, v in state_dict.items(): self.assertTrue( isinstance(load_tensor3[2]["opt"][k], fluid.core.LoDTensor)) self.assertTrue( np.array_equal( np.array(load_tensor3[2]["opt"][k]), np.array(v))) self.assertTrue(isinstance(load_tensor4[0], fluid.core.LoDTensor)) self.assertTrue(np.array_equal(np.array(load_tensor4[0]), obj4[0])) load_array1 = paddle.load(path1, return_numpy=True) load_array2 = paddle.load(path2, return_numpy=True) load_array3 = paddle.load(path3, return_numpy=True) load_array4 = paddle.load(path4, return_numpy=True) self.assertTrue(np.array_equal(load_array1[0], np.array(obj1[0]))) self.assertTrue(np.array_equal(load_array1[1], obj1[1])) self.assertTrue(np.array_equal(load_array1[2], obj1[2][1])) for i in range(len(load_array1)): self.assertTrue( type(load_array1[i]) == type(load_array2['k1'][i])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(np.array(v), load_array2['k2'][k])) self.assertTrue(load_array2['epoch'] == 123) self.assertTrue(np.array_equal(load_array3[0], np.array(obj3[0]))) self.assertTrue(np.array_equal(load_array3[1], obj3[1])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_array3[2]["state_dict"][k], np.array( v))) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_array3[2]["opt"][k], np.array(v))) self.assertTrue(np.array_equal(load_array4[0], obj4[0])) # dygraph mode paddle.disable_static() load_tensor1 = paddle.load(path1, return_numpy=False) load_tensor2 = paddle.load(path2, return_numpy=False) load_tensor3 = paddle.load(path3, return_numpy=False) load_tensor4 = paddle.load(path4, return_numpy=False) self.assertTrue( np.array_equal(np.array(load_tensor1[0]), np.array(obj1[0]))) self.assertTrue(np.array_equal(np.array(load_tensor1[1]), obj1[1])) self.assertTrue(np.array_equal(load_tensor1[2].numpy(), obj1[2][1])) for i in range(len(load_tensor1)): self.assertTrue( type(load_tensor1[i]) == type(load_tensor2['k1'][i])) for k, v in state_dict.items(): self.assertTrue( np.array_equal( np.array(v), np.array(load_tensor2['k2'][k]))) self.assertTrue(load_tensor2['epoch'] == 123) self.assertTrue(isinstance(load_tensor3[0], fluid.core.VarBase)) self.assertTrue(np.array_equal(load_tensor3[0].numpy(), obj3[0])) self.assertTrue(isinstance(load_tensor3[1], fluid.core.VarBase)) self.assertTrue(np.array_equal(load_tensor3[1].numpy(), obj3[1])) for k, v in state_dict.items(): self.assertTrue( isinstance(load_tensor3[2]["state_dict"][k], fluid.core.VarBase)) self.assertTrue( np.array_equal(load_tensor3[2]["state_dict"][k].numpy(), np.array(v))) for k, v in state_dict.items(): self.assertTrue( isinstance(load_tensor3[2]["opt"][k], fluid.core.VarBase)) self.assertTrue( np.array_equal(load_tensor3[2]["opt"][k].numpy(), np.array(v))) self.assertTrue(isinstance(load_tensor4[0], fluid.core.VarBase)) self.assertTrue(np.array_equal(load_tensor4[0].numpy(), obj4[0])) load_array1 = paddle.load(path1, return_numpy=True) load_array2 = paddle.load(path2, return_numpy=True) load_array3 = paddle.load(path3, return_numpy=True) load_array4 = paddle.load(path4, return_numpy=True) self.assertTrue(np.array_equal(load_array1[0], np.array(obj1[0]))) self.assertTrue(np.array_equal(load_array1[1], obj1[1])) self.assertTrue(np.array_equal(load_array1[2], obj1[2][1])) for i in range(len(load_array1)): self.assertTrue( type(load_array1[i]) == type(load_array2['k1'][i])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(np.array(v), load_array2['k2'][k])) self.assertTrue(load_array2['epoch'] == 123) self.assertTrue(np.array_equal(load_array3[0], np.array(obj3[0]))) self.assertTrue(np.array_equal(load_array3[1], obj3[1])) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_array3[2]["state_dict"][k], np.array( v))) for k, v in state_dict.items(): self.assertTrue( np.array_equal(load_array3[2]["opt"][k], np.array(v))) self.assertTrue(isinstance(load_array4[0], np.ndarray)) self.assertTrue(np.array_equal(load_array4[0], obj4[0])) def test_varbase_binary_var(self): paddle.disable_static() varbase = paddle.randn([3, 2], dtype='float32') path = 'test_paddle_save_load_varbase_binary_var/varbase' paddle.save(varbase, path, use_binary_format=True) load_array = paddle.load(path, return_numpy=True) load_tensor = paddle.load(path, return_numpy=False) origin_array = varbase.numpy() load_tensor_array = load_tensor.numpy() if paddle.fluid.core.is_compiled_with_cuda(): fluid.core._cuda_synchronize(paddle.CUDAPlace(0)) self.assertTrue(np.array_equal(origin_array, load_array)) self.assertTrue(np.array_equal(origin_array, load_tensor_array)) class TestSaveLoad(unittest.TestCase): def setUp(self): # enable dygraph mode paddle.disable_static() # config seed paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) def build_and_train_model(self): # create network layer = LinearNet() loss_fn = nn.CrossEntropyLoss() adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters()) # create data loader # TODO: using new DataLoader cause unknown Timeout on windows, replace it loader = random_batch_reader() # train train(layer, loader, loss_fn, adam) return layer, adam def check_load_state_dict(self, orig_dict, load_dict): for var_name, value in orig_dict.items(): load_value = load_dict[var_name].numpy() if hasattr( load_dict[var_name], 'numpy') else np.array(load_dict[var_name]) self.assertTrue(np.array_equal(value.numpy(), load_value)) def test_save_load(self): layer, opt = self.build_and_train_model() # save layer_save_path = "test_paddle_save_load.linear.pdparams" opt_save_path = "test_paddle_save_load.linear.pdopt" layer_state_dict = layer.state_dict() opt_state_dict = opt.state_dict() paddle.save(layer_state_dict, layer_save_path) paddle.save(opt_state_dict, opt_save_path) # load load_layer_state_dict = paddle.load(layer_save_path) load_opt_state_dict = paddle.load(opt_save_path) self.check_load_state_dict(layer_state_dict, load_layer_state_dict) self.check_load_state_dict(opt_state_dict, load_opt_state_dict) # test save load in static mode paddle.enable_static() static_save_path = "static_mode_test/test_paddle_save_load.linear.pdparams" paddle.save(layer_state_dict, static_save_path) load_static_state_dict = paddle.load(static_save_path) self.check_load_state_dict(layer_state_dict, load_static_state_dict) # error test cases, some tests relay base test above # 1. test save obj not dict error test_list = [1, 2, 3] # 2. test save path format error with self.assertRaises(ValueError): paddle.save(layer_state_dict, "test_paddle_save_load.linear.model/") # 3. test load path not exist error with self.assertRaises(ValueError): paddle.load("test_paddle_save_load.linear.params") # 4. test load old save path error with self.assertRaises(ValueError): paddle.load("test_paddle_save_load.linear") class TestSaveLoadProgram(unittest.TestCase): def test_save_load_program(self): paddle.enable_static() with new_program_scope(): layer = LinearNet() data = paddle.static.data( name='x_static_save', shape=(None, IMAGE_SIZE), dtype='float32') y_static = layer(data) main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() origin_main = main_program.desc.serialize_to_string() origin_startup = startup_program.desc.serialize_to_string() path1 = "test_paddle_save_load_program/main_program.pdmodel" path2 = "test_paddle_save_load_program/startup_program.pdmodel" paddle.save(main_program, path1) paddle.save(startup_program, path2) with new_program_scope(): load_main = paddle.load(path1).desc.serialize_to_string() load_startup = paddle.load(path2).desc.serialize_to_string() self.assertTrue(origin_main == load_main) self.assertTrue(origin_startup == load_startup) class TestSaveLoadLayer(unittest.TestCase): def test_save_load_layer(self): if six.PY2: return paddle.disable_static() inps = paddle.randn([1, IMAGE_SIZE], dtype='float32') layer1 = LinearNet() layer2 = LinearNet() layer1.eval() layer2.eval() origin = (layer1(inps), layer2(inps)) path = "test_save_load_layer_/layer.pdmodel" paddle.save((layer1, layer2), path) # static paddle.enable_static() with self.assertRaises(ValueError): paddle.load(path) # dygraph paddle.disable_static() loaded_layer = paddle.load(path) loaded_result = [l(inps) for l in loaded_layer] for i in range(len(origin)): self.assertTrue((origin[i] - loaded_result[i]).abs().max() < 1e-10) if __name__ == '__main__': unittest.main()