# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle import fluid from paddle.incubate.layers import _pull_gpups_sparse paddle.enable_static() class TestPullGpupsSparse(unittest.TestCase): """Test PullGpupsSparse op.""" def test_static_graph(self): startup_program = fluid.Program() train_program = fluid.Program() slots = [] with fluid.program_guard(train_program, startup_program): l = paddle.static.data( name='input', shape=[-1, 1], dtype="int64", lod_level=1 ) slots.append(l) output = _pull_gpups_sparse( slots, size=[11], is_distributed=True, is_sparse=True ) cost = paddle.mean(output) sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(cost, train_program) block = train_program.global_block() place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([1]).astype(np.int64) res = exe.run( train_program, feed={'input': img}, fetch_list=[output] ) if __name__ == "__main__": unittest.main()