# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from simple_nets import simple_fc_net, simple_fc_net_with_inputs import paddle from paddle import fluid class TestFetchLoDTensorArray(unittest.TestCase): def build_program(self, main_program, startup_program): with fluid.unique_name.guard(): with fluid.program_guard(main_program, startup_program): i = paddle.zeros(shape=[1], dtype='int64') img = paddle.static.data( name='image', shape=[-1, 784], dtype='float32' ) label = paddle.static.data( name='label', shape=[-1, 1], dtype='int64' ) loss = simple_fc_net_with_inputs(img, label, class_num=10) loss = simple_fc_net() opt = paddle.optimizer.SGD(learning_rate=0.001) opt.minimize(loss) array = paddle.tensor.array_write(x=img, i=i) i = paddle.increment(i) paddle.tensor.array_write(x=label, i=i, array=array) i = paddle.increment(i) paddle.tensor.array_write(x=loss, i=i, array=array) return loss, array def check_network(self, use_cuda=True): main_program = fluid.Program() startup_program = fluid.Program() loss, array = self.build_program(main_program, startup_program) batch_size = 32 image = np.random.normal(size=(batch_size, 784)).astype('float32') label = np.random.randint(0, 10, (batch_size, 1), dtype="int64") place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) feed_dict = {'image': image, 'label': label} build_strategy = fluid.BuildStrategy() binary = fluid.CompiledProgram( main_program, build_strategy=build_strategy ) for _ in range(3): loss_v, array_v = exe.run( binary, feed=feed_dict, fetch_list=[loss, array] ) self.assertEqual(loss_v.shape, ()) self.assertEqual(array_v[0].shape, (batch_size, 784)) self.assertEqual(array_v[1].shape, (batch_size, 1)) self.assertEqual(array_v[2].shape, ()) np.testing.assert_allclose(loss_v, array_v[2], rtol=1e-05) def test_fetch_lod_tensor_array(self): if fluid.core.is_compiled_with_cuda(): self.check_network(use_cuda=True) self.check_network(use_cuda=False) if __name__ == '__main__': paddle.enable_static() unittest.main()