# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ['CPU_NUM'] = '2' import unittest import numpy import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.executor import Executor paddle.enable_static() fluid.core._set_eager_deletion_mode(0.0, 1.0, True) class TestEagerDeletionWhileOpBase(unittest.TestCase): def test_main(self): places = [ core.CPUPlace(), ] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for p in places: with fluid.program_guard(fluid.Program(), fluid.Program()): with fluid.scope_guard(fluid.Scope()): self.run_main(p) def run_main(self, place): self.place = place if not core.is_compiled_with_cuda() and isinstance( self.place, core.CUDAPlace ): return device_cnt = 1 d0 = paddle.static.data("d0", shape=[-1, 10], dtype='float32') d1 = paddle.static.data("d1", shape=[-1, 10], dtype='float32') d2 = paddle.static.data("d2", shape=[-1, 10], dtype='float32') i = paddle.zeros(shape=[1], dtype='int64') i.stop_gradient = True init = paddle.zeros(shape=[10], dtype='float32') mem_array = paddle.tensor.array_write(x=init, i=i) data_array = paddle.tensor.array_write(x=d0, i=i) i = paddle.increment(i) paddle.tensor.array_write(d1, i, array=data_array) i = paddle.increment(i) paddle.tensor.array_write(d2, i, array=data_array) i = paddle.zeros(shape=[1], dtype='int64') i.stop_gradient = True array_len = paddle.tensor.fill_constant( shape=[1], dtype='int64', value=1 ) array_len.stop_gradient = True cond = paddle.less_than(x=i, y=array_len) j = paddle.tensor.fill_constant(shape=[1], dtype='int64', value=1) j.stop_gradient = True array_len2 = paddle.tensor.fill_constant( shape=[1], dtype='int64', value=3 ) array_len2.stop_gradient = True cond2 = paddle.less_than(x=j, y=array_len2) while_op = paddle.static.nn.control_flow.While(cond=cond) while_op2 = paddle.static.nn.control_flow.While(cond=cond2) with while_op.block(): d = paddle.tensor.array_read(array=data_array, i=i) prev = paddle.tensor.array_read(array=mem_array, i=i) d = paddle.reshape(d, shape=[10]) prev = paddle.reshape(prev, shape=[10]) result = paddle.add_n([d, prev]) i = paddle.increment(x=i) paddle.tensor.array_write(result, i=i, array=mem_array) paddle.assign(paddle.less_than(x=i, y=array_len), cond) with while_op2.block(): d2 = paddle.tensor.array_read(array=data_array, i=j) prev2 = paddle.tensor.array_read(array=mem_array, i=j) d2 = paddle.reshape(d2, shape=[10]) prev2 = paddle.reshape(prev2, shape=[10]) result2 = paddle.add_n([d2, prev2]) j = paddle.increment(x=j) paddle.tensor.array_write(result2, i=j, array=mem_array) paddle.assign(paddle.less_than(x=j, y=array_len2), cond2) sum_result = paddle.tensor.array_read(array=mem_array, i=j) sum_result.persistable = True tmp = paddle.unsqueeze(sum_result, axis=[0]) tmp = paddle.expand(tmp, [10, -1]) fc = paddle.static.nn.fc(tmp, size=256) loss = paddle.mean(sum_result) optim = paddle.optimizer.Adam(learning_rate=1e-3) optim.minimize(loss) gc_vars = core._get_eager_deletion_vars( fluid.default_main_program().desc, [loss.name] ) self.assertEqual(len(gc_vars), 3) exe = Executor(self.place) exe.run(fluid.default_startup_program()) prog = fluid.default_main_program() for _ in range(5): d = [] for i in range(3): tmp = numpy.random.random(size=[10]).astype('float32') d.append(numpy.array([tmp] * device_cnt)) outs = exe.run( program=prog, feed={'d0': d[0], 'd1': d[1], 'd2': d[2]}, fetch_list=[sum_result], ) self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01) if __name__ == '__main__': unittest.main()