# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import paddle.nn.functional as F from paddle import nn, static, utils from paddle.distributed import fleet from paddle.distributed.auto_parallel.static.completion import Completer from paddle.distributed.auto_parallel.static.dist_context import ( DistributedContext, ) from paddle.distributed.auto_parallel.static.parallelizer import ( AutoParallelizer, ) from paddle.distributed.auto_parallel.static.partitioner import Partitioner from paddle.distributed.auto_parallel.static.reshard import Resharder from paddle.distributed.fleet import auto paddle.enable_static() _global_parallel_strategy = "dp_mp_pp" _global_process_mesh = auto.ProcessMesh( [[[0, 1], [4, 5]], [[2, 3], [6, 7]]], dim_names=["x", "y", "z"] ) PP_MESH_0 = auto.ProcessMesh([[0, 1], [4, 5]], dim_names=["x", "y"]) PP_MESH_1 = auto.ProcessMesh([[2, 3], [6, 7]], dim_names=["x", "y"]) class MLPLayer(nn.Layer): def __init__( self, hidden_size=1024, intermediate_size=4 * 1024, initializer_range=0.02, ): super().__init__() d_model = hidden_size dim_feedforward = intermediate_size weight_attr = paddle.ParamAttr( initializer=nn.initializer.Normal(mean=0.0, std=initializer_range) ) bias_attr = None self.linear0 = nn.Linear( d_model, dim_feedforward, weight_attr, bias_attr=bias_attr ) self.linear1 = nn.Linear( dim_feedforward, d_model, weight_attr, bias_attr=bias_attr ) self.norm = nn.LayerNorm(d_model, epsilon=1e-5) def forward(self, input): auto.shard_tensor(self.linear0.weight, PP_MESH_0, [None, "y"]) auto.shard_tensor(self.linear1.weight, PP_MESH_1, ["y", None]) out = self.norm(input) out = self.linear0(out) out = F.gelu(out, approximate=True) out = self.linear1(out) param = paddle.create_parameter([1024, 4096], paddle.float32) auto.shard_tensor(param, PP_MESH_1, [None, "y"]) out = paddle.matmul(out, param) return out def mlp_forward(train_program, start_program): with static.program_guard( train_program, start_program ), utils.unique_name.guard(): batch_size = 4 hidden_size = 1024 sequence_len = 512 input = static.data( name="input", shape=[batch_size, hidden_size], dtype='float32' ) label = static.data( name="label", shape=[batch_size, 1], dtype='float32' ) auto.shard_tensor(input, PP_MESH_0, ["x", None]) auto.shard_tensor(label, PP_MESH_1, ["x", None]) mlp = MLPLayer( hidden_size=hidden_size, intermediate_size=4 * hidden_size, initializer_range=0.02, ) predict = mlp(input) error_cost = paddle.nn.functional.square_error_cost(predict, label) loss = paddle.mean(error_cost) return loss, train_program, start_program def get_dist_prog(train_program, startup_program, dist_context, rank_id): global _global_process_mesh dist_context.process_mesh = _global_process_mesh loss, train_program, startup_program = mlp_forward( train_program, startup_program ) fleet._user_defined_strategy = fleet.DistributedStrategy() fleet.user_defined_optimizer = paddle.optimizer.Adam() parallelizer = AutoParallelizer(fleet) parallelizer._dist_context = dist_context # serial forward & backward completion completer = Completer(dist_context) complete_train_program = completer.complete_forward_annotation( train_program ) dist_context.block_state.parse_forward_blocks(complete_train_program) params_grads = parallelizer._generate_backward( complete_train_program, startup_program, loss, parameter_list=None, no_grad_set=None, callbacks=None, ) # logical partition partitioner = Partitioner(dist_context, rank_id) ( auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads, ) = partitioner.partition( complete_train_program, startup_program, params_grads ) partitioned_optimize_ops = parallelizer._apply_optimize( auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads ) return ( auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads, ) def check_send_recv_result(dist_main_prog, rank_id): send_result = False recv_result = False ops = dist_main_prog.global_block().ops if rank_id in [0, 1, 4, 5]: for idx, op in enumerate(ops): if op.type == "send_v2" and "gelu_0.tmp_0" in op.input_arg_names: send_result = True if ( op.type == "recv_v2" and "gelu_0.tmp_0@GRAD" in op.output_arg_names[0] ): recv_result = True else: for idx, op in enumerate(ops): if ( op.type == "send_v2" and "gelu_0.tmp_0@GRAD" in op.input_arg_names ): send_result = True if ( op.type == "recv_v2" and "gelu_0.tmp_0" in op.output_arg_names[0] ): recv_result = True return send_result and recv_result def check_initialization_for_dpmppp(dist_startup_prog): broadcast_varnames = [] for op in dist_startup_prog.global_block().ops: if op.type == "c_broadcast": broadcast_varnames.append(op.output_arg_names[0]) result = len(broadcast_varnames) > 0 return result class TestMLPReshard(unittest.TestCase): def test_mlp_dpmppp(self): train_program = paddle.static.Program() startup_program = paddle.static.Program() dist_context = DistributedContext() rank_id = 2 dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog( train_program, startup_program, dist_context, rank_id ) # TODO: move to a new unittest for cost model # # test estimator # cluster = Cluster() # cluster.gen_default_config_cluster(device_count=8) # cost_estimator = CostEstimator(train_program, cluster) # global_cost = cost_estimator.estimate(dist_context) # max_memory = cost_estimator._estimate_max_memory_by_dist_op( # dist_context # ) # # test cache # global_cost = cost_estimator.estimate(dist_context) # max_memory = cost_estimator._estimate_max_memory_by_dist_op( # dist_context # ) # assert global_cost.time > 0 # assert max_memory > 0 resharder = Resharder( dist_main_prog, dist_startup_prog, rank_id, dist_context, dist_params_grads, ) resharder.reshard() # check send and recv result self.assertTrue(check_send_recv_result(dist_main_prog, rank_id)) # check parameter initialization self.assertTrue(check_initialization_for_dpmppp(dist_startup_prog)) if __name__ == "__main__": unittest.main()