# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle from paddle import fluid from paddle.distributed import fleet from paddle.distributed.fleet.base import role_maker from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import ( MetaOptimizerBase, ) class TestFleetMetaOptimizerBase(unittest.TestCase): def net(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog): with fluid.unique_name.guard(): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) input_x = paddle.static.data( name="x", shape=[-1, 32], dtype='float32' ) input_y = paddle.static.data( name="y", shape=[-1, 1], dtype='int64' ) fc_1 = paddle.static.nn.fc( x=input_x, size=64, activation='tanh' ) fc_2 = paddle.static.nn.fc(x=fc_1, size=256, activation='tanh') prediction = paddle.static.nn.fc( x=[fc_2], size=2, activation='softmax' ) cost = paddle.nn.functional.cross_entropy( input=prediction, label=input_y, reduction='none', use_softmax=False, ) avg_cost = paddle.mean(x=cost) optimizer = paddle.optimizer.SGD(learning_rate=0.01) opt = MetaOptimizerBase(optimizer) opt_ops, params_grads = opt.minimize(avg_cost) opt.apply_optimize( avg_cost, paddle.static.default_startup_program(), params_grads, ) return None net(fluid.default_startup_program(), fluid.default_main_program()) if __name__ == "__main__": unittest.main()