# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import sys import tempfile import numpy as np # TODO: remove sys.path.append sys.path.append("../legacy_test") import nets import paddle from paddle import fluid from paddle.fluid import framework from paddle.fluid.executor import Executor from paddle.optimizer import SGD paddle.enable_static() IS_SPARSE = True USE_GPU = False BATCH_SIZE = 256 def get_usr_combined_features(): # FIXME(dzh) : old API integer_value(10) may has range check. # currently we don't have user configurated check. USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 uid = paddle.static.data(name='user_id', shape=[-1, 1], dtype='int64') usr_emb = paddle.static.nn.embedding( input=uid, dtype='float32', size=[USR_DICT_SIZE, 32], param_attr='user_table', is_sparse=IS_SPARSE, ) usr_fc = paddle.static.nn.fc(x=usr_emb, size=32) USR_GENDER_DICT_SIZE = 2 usr_gender_id = paddle.static.data( name='gender_id', shape=[-1, 1], dtype='int64' ) usr_gender_emb = paddle.static.nn.embedding( input=usr_gender_id, size=[USR_GENDER_DICT_SIZE, 16], param_attr='gender_table', is_sparse=IS_SPARSE, ) usr_gender_fc = paddle.static.nn.fc(x=usr_gender_emb, size=16) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) usr_age_id = paddle.static.data(name='age_id', shape=[-1, 1], dtype="int64") usr_age_emb = paddle.static.nn.embedding( input=usr_age_id, size=[USR_AGE_DICT_SIZE, 16], is_sparse=IS_SPARSE, param_attr='age_table', ) usr_age_fc = paddle.static.nn.fc(x=usr_age_emb, size=16) USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 usr_job_id = paddle.static.data(name='job_id', shape=[-1, 1], dtype="int64") usr_job_emb = paddle.static.nn.embedding( input=usr_job_id, size=[USR_JOB_DICT_SIZE, 16], param_attr='job_table', is_sparse=IS_SPARSE, ) usr_job_fc = paddle.static.nn.fc(x=usr_job_emb, size=16) concat_embed = paddle.concat( [usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1 ) usr_combined_features = paddle.static.nn.fc( x=concat_embed, size=200, activation="tanh" ) return usr_combined_features def get_mov_combined_features(): MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 mov_id = paddle.static.data(name='movie_id', shape=[-1, 1], dtype='int64') mov_emb = paddle.static.nn.embedding( input=mov_id, dtype='float32', size=[MOV_DICT_SIZE, 32], param_attr='movie_table', is_sparse=IS_SPARSE, ) mov_fc = paddle.static.nn.fc(x=mov_emb, size=32) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) category_id = paddle.static.data( name='category_id', shape=[-1, 1], dtype='int64', lod_level=1 ) mov_categories_emb = paddle.static.nn.embedding( input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE ) mov_categories_hidden = paddle.static.nn.sequence_lod.sequence_pool( input=mov_categories_emb.squeeze(-2), pool_type="sum" ) MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) mov_title_id = paddle.static.data( name='movie_title', shape=[-1, 1], dtype='int64', lod_level=1 ) mov_title_emb = paddle.static.nn.embedding( input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE ) mov_title_conv = nets.sequence_conv_pool( input=mov_title_emb.squeeze(-2), num_filters=32, filter_size=3, act="tanh", pool_type="sum", ) concat_embed = paddle.concat( [mov_fc, mov_categories_hidden, mov_title_conv], axis=1 ) # FIXME(dzh) : need tanh operator mov_combined_features = paddle.static.nn.fc( x=concat_embed, size=200, activation="tanh" ) return mov_combined_features def model(): usr_combined_features = get_usr_combined_features() mov_combined_features = get_mov_combined_features() # need cos sim inference = paddle.nn.functional.cosine_similarity( x1=usr_combined_features, x2=mov_combined_features ) scale_infer = paddle.scale(x=inference, scale=5.0) label = paddle.static.data(name='score', shape=[-1, 1], dtype='float32') square_cost = paddle.nn.functional.square_error_cost( input=scale_infer, label=label ) avg_cost = paddle.mean(square_cost) return scale_infer, avg_cost def train(use_cuda, save_dirname, is_local=True): scale_infer, avg_cost = model() # test program test_program = fluid.default_main_program().clone(for_test=True) sgd_optimizer = SGD(learning_rate=0.2) sgd_optimizer.minimize(avg_cost) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = Executor(place) train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.movielens.train(), buf_size=8192), batch_size=BATCH_SIZE, ) test_reader = paddle.batch( paddle.dataset.movielens.test(), batch_size=BATCH_SIZE ) feed_order = [ 'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id', 'movie_title', 'score', ] def train_loop(main_program): exe.run(framework.default_startup_program()) feed_list = [ main_program.global_block().var(var_name) for var_name in feed_order ] feeder = fluid.DataFeeder(feed_list, place) PASS_NUM = 100 for pass_id in range(PASS_NUM): for batch_id, data in enumerate(train_reader()): # train a mini-batch outs = exe.run( program=main_program, feed=feeder.feed(data), fetch_list=[avg_cost], ) out = np.array(outs[0]) if (batch_id + 1) % 10 == 0: avg_cost_set = [] for test_data in test_reader(): avg_cost_np = exe.run( program=test_program, feed=feeder.feed(test_data), fetch_list=[avg_cost], ) avg_cost_set.append(avg_cost_np[0]) break # test only 1 segment for speeding up CI # get test avg_cost test_avg_cost = np.array(avg_cost_set).mean() if test_avg_cost < 6.0: # if avg_cost less than 6.0, we think our code is good. if save_dirname is not None: fluid.io.save_inference_model( save_dirname, [ "user_id", "gender_id", "age_id", "job_id", "movie_id", "category_id", "movie_title", ], [scale_infer], exe, ) return if math.isnan(float(out)): sys.exit("got NaN loss, training failed.") if is_local: train_loop(fluid.default_main_program()) else: port = os.getenv("PADDLE_PSERVER_PORT", "6174") pserver_ips = os.getenv("PADDLE_PSERVER_IPS") # ip,ip... eplist = [] for ip in pserver_ips.split(","): eplist.append(':'.join([ip, port])) pserver_endpoints = ",".join(eplist) # ip:port,ip:port... trainers = int(os.getenv("PADDLE_TRAINERS")) current_endpoint = os.getenv("POD_IP") + ":" + port trainer_id = int(os.getenv("PADDLE_TRAINER_ID")) training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER") t = paddle.distributed.transpiler.DistributeTranspiler() t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers) if training_role == "PSERVER": pserver_prog = t.get_pserver_program(current_endpoint) pserver_startup = t.get_startup_program( current_endpoint, pserver_prog ) exe.run(pserver_startup) exe.run(pserver_prog) elif training_role == "TRAINER": train_loop(t.get_trainer_program()) def infer(use_cuda, save_dirname=None): if save_dirname is None: return place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) inference_scope = fluid.core.Scope() with fluid.scope_guard(inference_scope): # Use fluid.io.load_inference_model to obtain the inference program desc, # the feed_target_names (the names of variables that will be fed # data using feed operators), and the fetch_targets (variables that # we want to obtain data from using fetch operators). [ inference_program, feed_target_names, fetch_targets, ] = fluid.io.load_inference_model(save_dirname, exe) # Use the first data from paddle.dataset.movielens.test() as input assert feed_target_names[0] == "user_id" # Use create_lod_tensor(data, recursive_sequence_lengths, place) API # to generate LoD Tensor where `data` is a list of sequences of index # numbers, `recursive_sequence_lengths` is the length-based level of detail # (lod) info associated with `data`. # For example, data = [[10, 2, 3], [2, 3]] means that it contains # two sequences of indexes, of length 3 and 2, respectively. # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one # level of detail info, indicating that `data` consists of two sequences # of length 3 and 2, respectively. user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place) assert feed_target_names[1] == "gender_id" gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place) assert feed_target_names[2] == "age_id" age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place) assert feed_target_names[3] == "job_id" job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place) assert feed_target_names[4] == "movie_id" movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place) assert feed_target_names[5] == "category_id" category_id = fluid.create_lod_tensor( [np.array([10, 8, 9], dtype='int64')], [[3]], place ) assert feed_target_names[6] == "movie_title" movie_title = fluid.create_lod_tensor( [np.array([1069, 4140, 2923, 710, 988], dtype='int64')], [[5]], place, ) # Construct feed as a dictionary of {feed_target_name: feed_target_data} # and results will contain a list of data corresponding to fetch_targets. results = exe.run( inference_program, feed={ feed_target_names[0]: user_id, feed_target_names[1]: gender_id, feed_target_names[2]: age_id, feed_target_names[3]: job_id, feed_target_names[4]: movie_id, feed_target_names[5]: category_id, feed_target_names[6]: movie_title, }, fetch_list=fetch_targets, return_numpy=False, ) print("inferred score: ", np.array(results[0])) def main(use_cuda): if use_cuda and not fluid.core.is_compiled_with_cuda(): return # Directory for saving the inference model temp_dir = tempfile.TemporaryDirectory() save_dirname = os.path.join( temp_dir.name, "recommender_system.inference.model" ) train(use_cuda, save_dirname) infer(use_cuda, save_dirname) temp_dir.cleanup() if __name__ == '__main__': main(USE_GPU)