# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import warnings import paddle import paddle.fluid.core as core paddle.enable_static() def execute(main_program, startup_program): if paddle.is_compiled_with_cuda(): place = paddle.CUDAPlace(0) else: place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(startup_program) exe.run(main_program) def get_vaild_warning_num(warning, w): num = 0 for i in range(len(w)): if warning in str(w[i].message): num += 1 return num class TestDeviceGuard(unittest.TestCase): def test_device_guard(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): data1 = paddle.full( shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32' ) data2 = paddle.full( shape=[1, 3, 5, 5], fill_value=0.5, dtype='float32' ) shape = paddle.shape(data2) with paddle.static.device_guard("cpu"): shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4]) with paddle.static.device_guard("gpu"): out = paddle.crop(data1, shape=shape) # check if the device attr is set correctly all_ops = main_program.global_block().ops device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName() for op in all_ops: if op.type == 'slice': self.assertEqual(op.desc.attr(device_attr_name), "cpu") if op.type == 'crop_tensor': self.assertEqual(op.desc.attr(device_attr_name), "gpu") execute(main_program, startup_program) def test_device_guard_with_id(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): data1 = paddle.full( shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32' ) data2 = paddle.full( shape=[1, 3, 5, 5], fill_value=0.5, dtype='float32' ) shape = paddle.shape(data2) with paddle.static.device_guard("cpu"): shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4]) with paddle.static.device_guard("gpu:1"): out = paddle.crop(data1, shape=shape) # check if the device attr is set correctly all_ops = main_program.global_block().ops device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName() for op in all_ops: if op.type == 'slice': self.assertEqual(op.desc.attr(device_attr_name), "cpu") if op.type == 'crop_tensor': self.assertEqual(op.desc.attr(device_attr_name), "gpu:1") execute(main_program, startup_program) def test_cpu_only_op(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): x = paddle.full( shape=[2, 255, 13, 13], fill_value=0.3, dtype='float32' ) gt_box = paddle.full( shape=[2, 6, 4], fill_value=0.5, dtype='float32' ) gt_label = paddle.full(shape=[2, 6], fill_value=1.0, dtype='int32') gt_score = paddle.full( shape=[2, 6], fill_value=0.5, dtype='float32' ) anchors = [ 10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326, ] anchor_mask = [0, 1, 2] with paddle.static.device_guard("gpu"): # yolo_loss only has cpu kernel, so its cpu kernel will be executed loss = paddle.vision.ops.yolo_loss( x=x, gt_box=gt_box, gt_label=gt_label, gt_score=gt_score, anchors=anchors, anchor_mask=anchor_mask, class_num=80, ignore_thresh=0.7, downsample_ratio=32, ) execute(main_program, startup_program) def test_without_kernel_op(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): i = paddle.full(shape=[1], dtype='int64', fill_value=0) loop_len = paddle.full(shape=[1], dtype='int64', fill_value=10) cond = paddle.less_than(x=i, y=loop_len) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with paddle.static.device_guard("cpu"): while_op = paddle.static.nn.control_flow.While(cond=cond) with while_op.block(): i = paddle.increment(x=i, value=1) paddle.assign(paddle.less_than(x=i, y=loop_len), cond) warning = "The Op(while) is not support to set device." warning_num = get_vaild_warning_num(warning, w) assert warning_num == 1 all_ops = main_program.global_block().ops device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName() for op in all_ops: if op.type == 'while': self.assertEqual(op.desc.attr(device_attr_name), "") execute(main_program, startup_program) def test_error(self): def device_attr(): with paddle.static.device_guard("cpu1"): out = paddle.full(shape=[1], fill_value=0.2, dtype='float32') def device_attr2(): with paddle.static.device_guard("cpu:1"): out = paddle.full(shape=[1], fill_value=0.2, dtype='float32') self.assertRaises(ValueError, device_attr) self.assertRaises(ValueError, device_attr2) # check if op_descs have op_device attr def test_op_descs_device_attr(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): data1 = paddle.static.data( name="data_1", shape=[4, 2], dtype="float32" ) label = paddle.static.data( name="label", shape=[4, 1], dtype="int64" ) fc1 = paddle.static.nn.fc(x=data1, size=10) fc2 = paddle.static.nn.fc(x=fc1, size=10) with paddle.static.device_guard("gpu"): out = paddle.nn.functional.softmax_with_cross_entropy( logits=fc1 + fc2, label=label ) loss = paddle.mean(out) opt = paddle.optimizer.SGD(0.1) opt.minimize(loss) all_ops = main_program.global_block().ops device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName() for op in all_ops: self.assertEqual(True, op.desc.has_attr(device_attr_name)) # fill_constant(backward op) is append to mean op, which should have # the same op_device value as mean op if op.desc == 'fill_constant': self.assertEqual(op.desc.attr(device_attr_name), "gpu") if __name__ == '__main__': unittest.main()