// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/ir/core/op_base.h" namespace paddle { namespace dialect { #define OPNAME(op_name) "pd." #op_name #define REIGSTER_EMPTY_OP(op_name, className) \ class className : public ir::Op { \ public: \ static const char *name() { return OPNAME(op_name); } \ static constexpr const char **attributes_name = nullptr; \ static constexpr uint32_t attributes_num = 0; \ static void verify(const std::vector &inputs, \ const std::vector &outputs, \ const ir::AttributeMap &attributes) { \ LOG(WARNING) << "This is a fake verify"; \ } \ }; // TODO(zhangbo): As operators are supplemented and defined, they are gradually // removed. REIGSTER_EMPTY_OP(conv2d, Conv2DOp); // To be customized: conv2d REIGSTER_EMPTY_OP(feed, FeedOp); // To be customized: feed REIGSTER_EMPTY_OP(batch_norm, BatchNormOp); // To be customized: batch_norm REIGSTER_EMPTY_OP(batch_norm_, BatchNormOp_); // To be customized: batch_norm_ REIGSTER_EMPTY_OP(elementwise_add, ElementwiseAddOp); // To be customized: add (elementwise_add) REIGSTER_EMPTY_OP(pool2d, Pool2DOp); // To be customized: pool2d REIGSTER_EMPTY_OP( flatten_contiguous_range, FlattenContiguousRangeOp); // flatten (flatten_contiguous_range) REIGSTER_EMPTY_OP(matmul_v2, MatmulV2Op); // To be customized: matmul (matmul_v2) REIGSTER_EMPTY_OP(reshape2, Reshape2Op); // To be customized: reshape REIGSTER_EMPTY_OP(softmax_with_cross_entropy, SoftmaxWithCrossEntropyOp); // cross_entropy_with_softmax // (softmax_with_cross_entropy) REIGSTER_EMPTY_OP(reduce_mean, ReduceMeanOp); // To be customized: mean (reduce_mean) REIGSTER_EMPTY_OP(top_k_v2, TopKV2Op); // topk (top_k_v2) REIGSTER_EMPTY_OP(fill_constant, FillConstantOp); // To be customized: full (fill_constant) REIGSTER_EMPTY_OP(reduce_mean_grad, ReduceMeanGradOp); // To be customized: reduce_mean_grad REIGSTER_EMPTY_OP( softmax_with_cross_entropy_grad, SoftmaxWithCrossEntropyGradOp); // cross_entropy_with_softmax_grad // (softmax_with_cross_entropy_grad) REIGSTER_EMPTY_OP( elementwise_add_grad, ElementwiseAddGradOp); // To be customized: add_grad (elementwise_add_grad) REIGSTER_EMPTY_OP( matmul_v2_grad, MatmulV2GradOp); // To be customized: matmul_grad (matmul_v2_grad) REIGSTER_EMPTY_OP( flatten_contiguous_range_grad, FlattenContiguousRangeGradOp); // flatten_grad // (flatten_contiguous_range_grad) REIGSTER_EMPTY_OP(pool2d_grad, Pool2DGradOp); // To be customized: pool2d_grad REIGSTER_EMPTY_OP(batch_norm_grad, BatchNormGradOp); // To be customized: batch_norm_grad REIGSTER_EMPTY_OP(conv2d_grad, Conv2DGradOp); // To be customized: conv2d_grad REIGSTER_EMPTY_OP(sum, SumOp); // To be customized: sum(reduce_sum) REIGSTER_EMPTY_OP(fetch_v2, FetchV2Op); // To be customized: fetch_v2 REIGSTER_EMPTY_OP(add, AddOp); REIGSTER_EMPTY_OP(add_grad, AddGradOp); REIGSTER_EMPTY_OP(matmul, MatMulOp); REIGSTER_EMPTY_OP(matmul_grad, MatMulGradOp); REIGSTER_EMPTY_OP(reshape, ReshapeOp); REIGSTER_EMPTY_OP(reshape_grad, ReshapeGradOp); REIGSTER_EMPTY_OP(mean, MeanOp); REIGSTER_EMPTY_OP(cross_entropy_with_softmax, CrossEntropyOp); REIGSTER_EMPTY_OP(cross_entropy_with_softmax_grad, CrossEntropyGradOp); REIGSTER_EMPTY_OP(topk, TopKOp); REIGSTER_EMPTY_OP(topk_grad, TopKGradOp); REIGSTER_EMPTY_OP(full, FullOp); REIGSTER_EMPTY_OP(add_n, AddNOp); } // namespace dialect } // namespace paddle