# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear from paddle.fluid.dygraph.base import to_variable from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase class SimpleImgConvPool(fluid.dygraph.Layer): def __init__( self, num_channels, num_filters, filter_size, pool_size, pool_stride, pool_padding=0, pool_type='max', global_pooling=False, conv_stride=1, conv_padding=0, conv_dilation=1, conv_groups=1, act=None, use_cudnn=False, param_attr=None, bias_attr=None, ): super(SimpleImgConvPool, self).__init__() self._conv2d = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation, groups=conv_groups, param_attr=None, bias_attr=None, use_cudnn=use_cudnn, ) self._pool2d = Pool2D( pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, pool_padding=pool_padding, global_pooling=global_pooling, use_cudnn=use_cudnn, ) def forward(self, inputs): x = self._conv2d(inputs) x = self._pool2d(x) return x class MNIST(fluid.dygraph.Layer): def __init__(self): super(MNIST, self).__init__() self._simple_img_conv_pool_1 = SimpleImgConvPool( 1, 20, 5, 2, 2, act="relu" ) self._simple_img_conv_pool_2 = SimpleImgConvPool( 20, 50, 5, 2, 2, act="relu" ) self.pool_2_shape = 50 * 4 * 4 SIZE = 10 scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5 self._fc = Linear( self.pool_2_shape, 10, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale ) ), act="softmax", ) def forward(self, inputs, label): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) cost = self._fc(x) loss = fluid.layers.cross_entropy(cost, label) avg_loss = paddle.mean(loss) return avg_loss class TestMnist(TestParallelDyGraphRunnerBase): def get_model(self): model = MNIST() train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=2, drop_last=True ) opt = paddle.optimizer.Adam( learning_rate=1e-3, parameters=model.parameters() ) return model, train_reader, opt def run_one_loop(self, model, opt, data): batch_size = len(data) dy_x_data = np.array([x[0].reshape(1, 28, 28) for x in data]).astype( 'float32' ) y_data = ( np.array([x[1] for x in data]) .astype('int64') .reshape(batch_size, 1) ) img = to_variable(dy_x_data) label = to_variable(y_data) label.stop_gradient = True avg_loss = model(img, label) return avg_loss if __name__ == "__main__": runtime_main(TestMnist)