# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle class Exponential(paddle.distribution.ExponentialFamily): """mock exponential distribution, which support computing entropy and kl use bregman divergence """ _mean_carrier_measure = 0 def __init__(self, rate): self._rate = rate super(Exponential, self).__init__(batch_shape=rate.shape) @property def rate(self): return self._rate def entropy(self): return 1.0 - paddle.log(self._rate) @property def _natural_parameters(self): return (-self._rate,) def _log_normalizer(self, x): return -paddle.log(-x) class DummyExpFamily(paddle.distribution.ExponentialFamily): """dummy class extend from exponential family""" def __init__(self, *args): pass def entropy(self): return 1.0 @property def _natural_parameters(self): return (1.0,) def _log_normalizer(self, x): return -paddle.log(-x) @paddle.distribution.register_kl(Exponential, Exponential) def _kl_exponential_exponential(p, q): rate_ratio = q.rate / p.rate t1 = -rate_ratio.log() return t1 + rate_ratio - 1