# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import core import numpy as np import os import multiprocessing import warnings from .framework import ( Variable, default_main_program, _current_expected_place, _non_static_mode, _in_eager_without_dygraph_check, ) from .framework import _cpu_num, _cuda_ids __all__ = ['DataFeeder'] _PADDLE_DTYPE_2_NUMPY_DTYPE = { core.VarDesc.VarType.BOOL: 'bool', core.VarDesc.VarType.FP16: 'float16', core.VarDesc.VarType.BF16: 'uint16', core.VarDesc.VarType.FP32: 'float32', core.VarDesc.VarType.FP64: 'float64', core.VarDesc.VarType.INT8: 'int8', core.VarDesc.VarType.INT16: 'int16', core.VarDesc.VarType.INT32: 'int32', core.VarDesc.VarType.INT64: 'int64', core.VarDesc.VarType.UINT8: 'uint8', core.VarDesc.VarType.COMPLEX64: 'complex64', core.VarDesc.VarType.COMPLEX128: 'complex128', } def convert_dtype(dtype): if isinstance(dtype, core.VarDesc.VarType): if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE: return _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype] elif isinstance(dtype, type): if dtype in [ bool, np.float16, np.uint16, np.float32, np.float64, np.int8, np.int16, np.int32, np.int64, np.uint8, np.complex64, np.complex128, ]: return dtype.__name__ else: if dtype in [ 'bool', 'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128', u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8', u'complex64', u'complex128', ]: # this code is a little bit dangerous, since error could happen # when casting no-ascii code to str in python2. # but since the set itself is limited, so currently, it is good. # however, jointly supporting python2 and python3, (as well as python4 maybe) # may still be a long-lasting problem. return str(dtype) # NOTE(zhangbo): Now numpy does not support bfloat, and paddle use uint16 to represent bfloat16, and there binaries are consistent. if dtype in ['bfloat16']: return 'uint16' raise TypeError( "dtype must be any of [bool, float16, uint16, float32, float64, int8, int16, " "int32, int64, uint8, complex64, complex128], but received %s" % dtype ) def check_variable_and_dtype( input, input_name, expected_dtype, op_name, extra_message='' ): check_type(input, input_name, Variable, op_name, extra_message) check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message) def check_type(input, input_name, expected_type, op_name, extra_message=''): # NOTE [ Why skip dynamic graph check ]: # 1. If the input type / dtype of a layer is wrong, it will be reported # directly on that line. User can easily print the relevant information # on which line. It is easier to debug, so there is no need to check # in dynamic graph mode. # 2. Performance considerations. Because these checks are executed at # each step in dynamic graph mode, it will bring a heavy performance burden. if _non_static_mode(): return # NOTE: `in_declarative_mode` is used to determined whether this op is called under # @declarative in transformation from dygrah to static layer. We add VarBase in # expected_type to skip checking because varBase may be created and used in unusual way. from .dygraph.base import in_declarative_mode # Need a better design to be fix this. if in_declarative_mode(): if not isinstance(expected_type, tuple): expected_type = (expected_type,) expected_type += (core.VarBase,) if _in_eager_without_dygraph_check(): expected_type += (core.eager.Tensor,) elif isinstance(input, core.VarBase): raise TypeError( "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. " "Because received '{}' in {} is a imperative Variable.".format( input_name, op_name ) ) elif hasattr(core, "eager"): if isinstance(input, core.eager.Tensor): raise TypeError( "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. " "Because received '{}' in {} is a imperative Variable.".format( input_name, op_name ) ) if not isinstance(input, expected_type): raise TypeError( "The type of '%s' in %s must be %s, but received %s. %s" % (input_name, op_name, expected_type, type(input), extra_message) ) def check_dtype( input_dtype, input_name, expected_dtype, op_name, extra_message='' ): # See NOTE [ Why skip dynamic graph check ] if _non_static_mode(): return if convert_dtype(input_dtype) in ['float16']: warnings.warn( "The data type of '%s' in %s only support float16 in GPU now. %s" % (input_name, op_name, extra_message) ) if convert_dtype(input_dtype) in ['uint16'] and op_name not in [ 'reshape', 'lookup_table', 'scale', ]: warnings.warn( "The data type of '%s' in %s only support bfloat16 in OneDNN now. %s" % (input_name, op_name, extra_message) ) if convert_dtype(input_dtype) not in expected_dtype: raise TypeError( "The data type of '%s' in %s must be %s, but received %s. %s" % ( input_name, op_name, expected_dtype, convert_dtype(input_dtype), extra_message, ) ) def check_shape( shape, op_name, expected_shape_type=(list, tuple, Variable), expected_element_type=(int, Variable), expected_tensor_dtype=('int32', 'int64'), ): # See NOTE [ Why skip dynamic graph check ] if _non_static_mode(): return check_type(shape, 'shape', expected_shape_type, op_name) if expected_element_type is not None and not isinstance(shape, Variable): for item in shape: check_type(item, 'element of shape', expected_element_type, op_name) if expected_tensor_dtype is not None and isinstance(item, Variable): check_dtype( item.dtype, 'element of shape', expected_tensor_dtype, op_name, 'If element of shape is Tensor, its data type should be {}'.format( ', '.join(expected_tensor_dtype) ), ) if expected_tensor_dtype is not None and isinstance(shape, Variable): check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name) class DataToLoDTensorConverter(object): def __init__(self, place, lod_level, shape, dtype): self.place = place self.lod_level = lod_level self.shape = shape negtive_count = 0 for s in self.shape: if s < 0: negtive_count += 1 if negtive_count > 1: self.shape = None break self.dtype = convert_dtype(dtype) self._reset() def _reset(self): self.data = [] self.lod = [[] for _ in range(self.lod_level)] def feed(self, data): self._feed_impl_(data, self.lod, self.lod_level) def _feed_impl_(self, data, lod, lod_level): if lod_level == 0: self.data.append(data) else: lod[0].append(len(data)) for each_data in data: self._feed_impl_(each_data, lod[1:], lod_level - 1) def _check_shape(self, shape): for s1, s2 in zip(self.shape, shape): if s1 != s2 and s1 >= 0 and s2 >= 0: raise ValueError( "Shape not match. What is defined in data layer is {}, but receive {}".format( self.shape, shape ) ) def done(self): arr = np.array(self.data, dtype=self.dtype) if self.shape: if len(arr.shape) != len(self.shape): try: arr = arr.reshape(self.shape) except ValueError: raise ValueError( "Reshape error. What is defined in data layer is {}, but receive {}".format( self.shape, arr.shape ) ) t = core.LoDTensor() t.set(arr, self.place) if self.lod_level > 0: t.set_recursive_sequence_lengths(self.lod) self._reset() return t class BatchedTensorProvider(object): def __init__(self, feed_list, place, batch_size, generator, drop_last): self.place = place self.batch_size = batch_size self.generator = generator self.converters = [] self.drop_last = drop_last for var in feed_list: assert var.lod_level == 0, "lod_level must be 0" self.converters.append( DataToLoDTensorConverter( place=self.place, lod_level=0, shape=var.shape, dtype=var.dtype, ) ) def _done(self): return [c.done() for c in self.converters] def __call__(self): idx = 0 for each_sample in self.generator(): for each_slot, each_converter in zip(each_sample, self.converters): each_converter.data.append(each_slot) idx += 1 if idx == self.batch_size: idx = 0 yield self._done() if not self.drop_last and idx > 0: yield self._done() else: [c._reset() for c in self.converters] class DataFeeder(object): """ :api_attr: Static Graph DataFeeder converts the data that returned by a reader into a data structure that can feed into Executor. The reader is usually a python generator that returns a list of mini-batch data entries. Parameters: feed_list (list): Variables or names of Variables that need to feed. place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): place indicates the device (CPU | GPU) the data will be fed into, if you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` (:code:`i` represents the GPU id), or if you want to feed data into CPU, please using :code:`fluid.CPUPlace()`. program (:ref:`api_fluid_Program` , optional): The Program that will feed data into, if program is None, it will use default_main_program(). Default None. Raises: :code:`ValueError` - If some Variables are not in this Program. Example: .. code-block:: python import numpy as np import paddle import paddle.fluid as fluid place = fluid.CPUPlace() def reader(): for _ in range(4): yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'), main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32') data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32') out = fluid.layers.fc(input=[data_1, data_2], size=2) # ... feeder = fluid.DataFeeder([data_1, data_2], place) exe = fluid.Executor(place) exe.run(startup_program) feed_data = feeder.feed(reader()) # print feed_data to view feed results # print(feed_data['data_1']) # print(feed_data['data_2']) outs = exe.run(program=main_program, feed=feed_data, fetch_list=[out]) print(outs) """ def __init__(self, feed_list, place, program=None): self.feed_dtypes = [] self.feed_names = [] self.feed_shapes = [] self.feed_lod_level = [] if program is None: program = default_main_program() for each_var in feed_list: if isinstance(each_var, str): each_var = program.block(0).var(each_var) if not isinstance(each_var, Variable): raise TypeError("Feed list should contain a list of variable") self.feed_dtypes.append(each_var.dtype) self.feed_names.append(each_var.name) self.feed_lod_level.append(each_var.lod_level) self.feed_shapes.append(each_var.shape) self.place = place def feed(self, iterable): """ According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts the input into a data structure that can feed into Executor. Parameters: iterable (generator): user defined python generator to read the raw input data Returns: :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs Example: .. code-block:: python # In this example, reader - generator will return a list of ndarray of 3 elements # feed API will convert each ndarray input into a tensor # the return result is a dict with keys: data_1, data_2, data_3 # result['data_1'] a LoD-Tensor with shape of [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1. # result['data_2'], result['data_3'] are similar. import numpy as np import paddle.fluid as fluid def reader(limit=5): for i in range(1, limit + 1): yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32') data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3]) data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64') data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32') feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace()) result = feeder.feed(reader()) print(result['data_1']) print(result['data_2']) print(result['data_3']) """ converter = [] for lod_level, shape, dtype in zip( self.feed_lod_level, self.feed_shapes, self.feed_dtypes ): converter.append( DataToLoDTensorConverter( place=self.place, lod_level=lod_level, shape=shape, dtype=dtype, ) ) for each_sample in iterable: assert len(each_sample) == len(converter), ( "The number of fields in data (%d) does not match " + "len(feed_list) (%d)" ) % (len(each_sample), len(converter)) for each_converter, each_slot in zip(converter, each_sample): each_converter.feed(each_slot) ret_dict = {} for each_name, each_converter in zip(self.feed_names, converter): ret_dict[each_name] = each_converter.done() return ret_dict def feed_parallel(self, iterable, num_places=None): """ Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU). Here :code:`iterable` is a list of python generators. The data return by each generator in the list will be fed into a separate device. Parameters: iterable (list|tuple): list of user-defined python generators. The element number should match the :code:`num_places`. num_places (int, optional): the number of devices. If not provided (None), all available devices on the machine will be used. Default None. Returns: :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, the total number of dicts will be generated matches with the :code:`num_places` .. note:: The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number Example: .. code-block:: python import numpy as np import paddle.fluid as fluid def generate_reader(batch_size, base=0, factor=1): def _reader(): for i in range(batch_size): yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5 return _reader() x = fluid.data(name='x', shape=[None, 2, 2]) y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32') z = fluid.layers.elementwise_add(x, y) feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace()) place_num = 2 places = [fluid.CPUPlace() for x in range(place_num)] data = [] exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places) # print sample feed_parallel r result # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)): # print(item['x']) # print(item['y']) reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)] res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z]) print(res) """ if isinstance(self.place, core.CUDAPlace): places = [ core.CUDAPlace(i) for i in range(self._get_number_of_places_(num_places)) ] else: places = [ core.CPUPlace() for _ in range(self._get_number_of_places_(num_places)) ] if len(iterable) != len(places): raise ValueError( "feed_parallel takes multiple mini-batches. Each " "mini-batch will be feed on each device. The " "number of devices and number of mini-batches " "must be same." ) place = self.place for p, batch in zip(places, iterable): self.place = p yield self.feed(batch) self.place = place def _get_number_of_places_(self, num_places): if num_places is not None: return int(num_places) elif isinstance(self.place, core.CUDAPlace): return len(_cuda_ids()) else: return _cpu_num() def decorate_reader( self, reader, multi_devices, num_places=None, drop_last=True ): """ Decorate the reader (generator) to fit multiple devices. The reader generate multiple mini-batches. Each mini-batch will be fed into a single device. Parameters: reader(generator): a user defined python generator used to get :code:`mini-batch` of data. A :code:`mini-batch` can be regarded as a python generator that returns batches of input entities, just like the below :code:`_mini_batch` in the code example. multi_devices(bool): indicate whether to use multiple devices or not. num_places(int, optional): if :code:`multi_devices` is True, you can specify the number of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the devices of the current machine. Default None. drop_last(bool, optional): whether to drop the last round of data if it is not enough to feed all devices. Default True. Returns: :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor Raises: :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly. Example: .. code-block:: python import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.compiler as compiler def reader(): def _mini_batch(batch_size): for i in range(batch_size): yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1]) for _ in range(10): yield _mini_batch(np.random.randint(1, 10)) place_num = 3 places = [fluid.CPUPlace() for _ in range(place_num)] # a simple network sample data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') hidden = fluid.layers.fc(input=data, size=10) feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label]) reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True) exe = fluid.Executor(places[0]) exe.run(fluid.default_startup_program()) compiled_prog = compiler.CompiledProgram( fluid.default_main_program()).with_data_parallel(places=places) for i,data in enumerate(reader()): # print data if you like # print(i, data) ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden]) print(ret) """ def __reader_creator__(): if not multi_devices: for item in reader(): yield self.feed(item) else: num = self._get_number_of_places_(num_places) item = [] for batch in reader(): item.append(batch) if len(item) == num: yield list(self.feed_parallel(item, num)) item = [] if not drop_last and len(item) != 0: raise ValueError( "The data batch which cannot fit for devices will be " "dropped is not implementation. Other strategies are " "not implemented" ) return __reader_creator__