// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once // CUDA and HIP use same api #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #include #include #include #include #include #include "paddle/phi/api/ext/dispatch.h" #include "paddle/phi/kernels/funcs/broadcast_function.h" namespace phi { template void ReduceGrad(const GPUContext& dev_ctx, DenseTensor* d_out, DenseTensor* d_x, DataType out_dtype, Functor functor) { std::vector inputs = {d_out}; std::vector outputs = {d_x}; PD_VISIT_ALL_TYPES( out_dtype, "BroadcastKernel", ([&] { funcs::BroadcastKernel( dev_ctx, inputs, &outputs, 0, functor); })); } template class TransformOp> void ReduceGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const std::vector& dims, bool keep_dim, bool reduce_all, DataType in_dtype, DataType out_dtype, DenseTensor* x_grad) { auto* in_x = &x; auto* d_out = &out_grad; auto* d_x = x_grad; auto pt_out_dtype = in_dtype; // get reduce_dim and reduce_num for reduce_mean_grad int dim_size = in_x->dims().size(); std::vector reduce_dims = funcs::details::GetReduceDim(dims, dim_size, reduce_all); auto update_dims = vectorize(d_x->dims()); int reduce_num = 1; for (auto i : reduce_dims) { reduce_num *= (in_x->dims())[i]; update_dims[i] = 1; } // make new tensor DenseTensor new_d_out(d_out->dtype()); new_d_out.ShareDataWith(*d_out); new_d_out.Resize(phi::make_ddim(update_dims)); if (in_dtype != DataType::UNDEFINED) { dev_ctx.Alloc(d_x, in_dtype); } else { dev_ctx.Alloc(d_x, d_out->dtype()); } auto pt_d_out = new_d_out; auto pt_d_x = *d_x; if (in_dtype == DataType::UNDEFINED) { pt_out_dtype = d_out->dtype(); } using MPType = typename kps::details::MPTypeTrait::Type; phi::ReduceGrad>( dev_ctx, &pt_d_out, &pt_d_x, pt_out_dtype, TransformOp(reduce_num)); } } // namespace phi #endif