// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/eager/api/utils/global_utils.h" #include "paddle/fluid/eager/grad_node_info.h" #include "paddle/fluid/eager/tensor_wrapper.h" #include "paddle/fluid/framework/new_executor/interpretercore.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/ir/transforms/pd_op_to_kernel_pass.h" #include "paddle/fluid/ir_adaptor/translator/program_translator.h" #include "paddle/fluid/operators/run_program_op.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/profiler/event_tracing.h" #include "paddle/ir/core/program.h" #include "paddle/ir/core/value.h" PHI_DECLARE_bool(enable_new_ir_in_executor); namespace details { using Tensor = paddle::Tensor; static std::vector DereferenceTensors( const std::vector &tensor_ptr) { std::vector res; for (auto *t : tensor_ptr) { res.emplace_back(*t); } return res; } static std::vector GetTensorsName(const std::vector &ins) { std::vector in_names; for (auto &in_t : ins) { in_names.emplace_back(in_t.name()); } return in_names; } static std::vector GetTensorsName( const std::vector &ins) { std::vector in_names; for (auto *in_t : ins) { in_names.emplace_back(in_t->name()); } return in_names; } static void CheckInputVarStatus(const Tensor &tensor) { PADDLE_ENFORCE_EQ(tensor.defined() && tensor.is_dense_tensor(), true, paddle::platform::errors::InvalidArgument( "The input tensor %s of " "RunProgram(Grad)Op holds " "wrong type. Expect type is DenseTensor.", tensor.name())); PADDLE_ENFORCE_EQ( static_cast(tensor.impl().get())->IsInitialized(), true, paddle::platform::errors::InvalidArgument( "The tensor in input tensor %s of " "RunProgram(Grad)Op " "is not initialized.", tensor.name())); } static void CheckOutputVarStatus(const paddle::framework::Variable &src_var, const Tensor &dst_tensor) { auto name = dst_tensor.name(); PADDLE_ENFORCE_EQ(dst_tensor.defined(), true, paddle::platform::errors::InvalidArgument( "dst_tensor `%s` shall be defined.", name)); if (dst_tensor.is_dense_tensor()) { auto &src_tensor = src_var.Get(); PADDLE_ENFORCE_EQ(phi::DenseTensor::classof(&src_tensor), true, paddle::platform::errors::InvalidArgument( "The output tensor %s get from " "RunProgram(Grad)Op's internal scope holds " "wrong type. Expect type is DenseTensor", name)); PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(), true, paddle::platform::errors::InvalidArgument( "The tensor in output tensor %s get from " "RunProgram(Grad)Op's internal " "scope is not initialized.", name)); } else if (dst_tensor.is_selected_rows()) { auto &src_tensor = src_var.Get(); PADDLE_ENFORCE_EQ(phi::SelectedRows::classof(&src_tensor), true, paddle::platform::errors::InvalidArgument( "The output tensodfr %s get from " "RunProgram(Grad)Op's internal scope holds " "wrong type. Expect type is SelectedRows", name)); PADDLE_ENFORCE_EQ(src_tensor.initialized(), true, paddle::platform::errors::InvalidArgument( "The tensor in output tensor %s get from " "RunProgram(Grad)Op's " "internal scope is not initialized.", name)); } else { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "The RunProgram(Grad)Op only support output " "variable of type LoDTensor or SelectedRows", name)); } } static void ShareTensorsIntoScope(const std::vector &tensors, paddle::framework::Scope *scope) { for (size_t i = 0; i < tensors.size(); ++i) { auto name = tensors[i].name(); if (name == paddle::framework::kFakeVarName) { continue; } auto *var = scope->Var(name); CheckInputVarStatus(tensors[i]); // share tensor auto tensor_base = tensors[i].impl(); if (phi::DenseTensor::classof(tensor_base.get())) { auto *dst_tensor = var->GetMutable(); auto t = std::dynamic_pointer_cast(tensor_base); *dst_tensor = *t; } else if (phi::SelectedRows::classof(tensor_base.get())) { auto *dst_tensor = var->GetMutable(); auto t = std::dynamic_pointer_cast(tensor_base); *dst_tensor = *t; } } } static void ShareTensorsFromScope( const std::vector &tensors, const paddle::framework::BlockDesc &global_block, paddle::framework::Scope *scope) { for (size_t i = 0; i < tensors.size(); ++i) { // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all // parameters before generating out_tmp have no @GRAD, it will raise error // because we can't find them in scope. So we skip sharing these vars or // var@GRAD if they don't appear in global block. auto &name = tensors[i]->name(); if (name == paddle::framework::kEmptyVarName || name == paddle::framework::kFakeVarName || !global_block.HasVar(name)) { VLOG(2) << "find tensor name is " << name << ", skip it!"; continue; } // NOTE: Here skip not found var is dangerous, if a bug is caused here, // the result is grad calculation error, which will be very hidden! auto *var = scope->FindVar(name); PADDLE_ENFORCE_NOT_NULL( var, paddle::platform::errors::NotFound("The output tensor %s is not in " "RunProgram(Grad)Op'" "s internal scope.", name)); CheckOutputVarStatus(*var, *tensors[i]); // share tensor if (var->IsType()) { auto &src_tensor = var->Get(); auto *dst_tensor = const_cast( dynamic_cast(tensors[i]->impl().get())); VLOG(2) << "share " << name << " from scope"; *dst_tensor = src_tensor; } else if (var->IsType()) { auto &src_tensor = var->Get(); auto *dst_tensor = const_cast( dynamic_cast(tensors[i]->impl().get())); *dst_tensor = src_tensor; } } } static void ShareTensorsFromScopeWithPartialBlock( const std::vector &tensors, const paddle::framework::BlockDesc &forward_global_block, const paddle::framework::BlockDesc &backward_global_block, paddle::framework::Scope *scope) { for (size_t i = 0; i < tensors.size(); ++i) { auto &name = tensors[i]->name(); if (name == paddle::framework::kEmptyVarName || name == paddle::framework::kFakeVarName || (!forward_global_block.HasVar(name) && !backward_global_block.HasVar(name))) { VLOG(2) << "find tensor name is " << name << ", skip it!"; continue; } auto *var = scope->FindVar(name); PADDLE_ENFORCE_NOT_NULL( var, paddle::platform::errors::NotFound("The output tensor %s is not in " "RunProgram(Grad)Op'" "s internal scope.", name)); CheckOutputVarStatus(*var, *tensors[i]); // share tensor if (var->IsType()) { auto &src_tensor = var->Get(); auto *dst_tensor = const_cast( dynamic_cast(tensors[i]->impl().get())); VLOG(2) << "share " << name << " from scope"; *dst_tensor = src_tensor; } else if (var->IsType()) { auto &src_tensor = var->Get(); auto *dst_tensor = const_cast( dynamic_cast(tensors[i]->impl().get())); *dst_tensor = src_tensor; } } } static void BuildScopeByBlock( const paddle::framework::InterpreterCore &interpreter_core, const paddle::framework::BlockDesc &block, paddle::framework::Scope *scope) { for (auto &var_desc : block.AllVars()) { auto var_name = var_desc->Name(); if (var_name == paddle::framework::kEmptyVarName) { continue; } if (!scope->FindLocalVar(var_name)) { auto *ptr = scope->Var(var_name); InitializeVariable(ptr, var_desc->GetType()); VLOG(2) << "Initialize Block Variable " << var_name; } } auto &data_transfer_added_vars = interpreter_core.GetVariableScope()->DataTransferAddedVars(); for (size_t i = 0; i < data_transfer_added_vars.size(); i++) { auto *ptr = scope->Var(data_transfer_added_vars[i].first); InitializeVariable(ptr, static_cast( data_transfer_added_vars[i].second)); VLOG(2) << "Initialize Transfer Added Variable " << data_transfer_added_vars[i].first; } } static void GcScope(paddle::framework::Scope *scope) { std::deque> *garbages = new std::deque>(); for (auto &var : scope->LocalVars()) { if (var != nullptr) { if (var->IsType()) { garbages->emplace_back( var->GetMutable()->MoveMemoryHolder()); } if (var->IsType()) { garbages->emplace_back(var->GetMutable() ->mutable_value() ->MoveMemoryHolder()); } if (var->IsType()) { auto *lod_tensor_arr = var->GetMutable(); for (auto &t : *lod_tensor_arr) { garbages->emplace_back(t.MoveMemoryHolder()); } lod_tensor_arr->clear(); } } } delete garbages; // free mem } } // namespace details inline void RunProgramAPI( const std::vector &x, const std::vector ¶ms, std::vector &out, // NOLINT std::vector &step_scope, // NOLINT std::vector &dout, // NOLINT bool require_any_grad, const paddle::framework::AttributeMap &attrs) { VLOG(2) << "RunProgramOpKernel Compute"; // In the original run_program OP, the default value of the is_test // attribute is false, we should check if there is is_test parameter // in attrs auto is_test = false; if (attrs.count("is_test")) { is_test = PADDLE_GET_CONST(bool, attrs.at("is_test")); } int64_t program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id")); auto place = egr::Controller::Instance().GetExpectedPlace(); // NOTE(chenweihang): In order not to add new variable type, use vector // here. Originally, here can use scope directly. auto *out_scope_vec = &step_scope; PADDLE_ENFORCE_EQ( out_scope_vec->size(), 1, paddle::platform::errors::InvalidArgument( "The OutScope of RunProgramGradOp should only hold one scope.")); VLOG(2) << "RunProgramOp use interpretercore to execute program."; paddle::framework::Scope *global_inner_scope = out_scope_vec->front(); VLOG(4) << "global_inner_scope:" << global_inner_scope; auto input_names = details::GetTensorsName(x); auto output_names = details::GetTensorsName(out); auto param_names = details::GetTensorsName(params); auto dout_names = details::GetTensorsName(dout); if (VLOG_IS_ON(6)) { std::stringstream s; s << "input_names: "; for (auto name : input_names) { s << name << " "; } s << std::endl; s << "param_names: "; for (auto name : param_names) { s << name << " "; } s << std::endl; s << "output_names: "; for (auto name : output_names) { s << name << " "; } s << std::endl; s << "dout_names: "; for (auto name : dout_names) { s << name << " "; } s << std::endl; VLOG(6) << s.str(); } auto *forward_global_block = PADDLE_GET_CONST( paddle::framework::BlockDesc *, attrs.at("forward_global_block")); auto *backward_global_block = PADDLE_GET_CONST( paddle::framework::BlockDesc *, attrs.at("backward_global_block")); auto *forward_program = forward_global_block->Program(); auto *backward_program = backward_global_block->Program(); auto &interpretercore_info_cache = paddle::framework::InterpreterCoreInfoCache::Instance(); std::shared_ptr interpreter_core = nullptr; if (!interpretercore_info_cache.Has( program_id, global_inner_scope, /*is_grad=*/false)) { paddle::platform::RecordEvent record_event( "create_new_interpretercore", paddle::platform::TracerEventType::UserDefined, 1); VLOG(2) << "No interpretercore cahce, so create a new interpretercore " "for program: " << program_id; // Step 1. share input_vars & parameters into scope details::ShareTensorsIntoScope(x, global_inner_scope); details::ShareTensorsIntoScope(params, global_inner_scope); // Step 2. create new interpretercore if (FLAGS_enable_new_ir_in_executor) { // build new ir program auto ir_program = paddle::framework::ConstructFowardIrProgram( forward_global_block, backward_global_block, output_names, x, params); interpreter_core = paddle::framework::CreateNewIRInterpreterCoreInfoToCache( std::move(ir_program), place, /*is_grad=*/false, program_id, global_inner_scope); } else { interpreter_core = paddle::framework::CreateProgramInterpreterCoreInfoToCache( *forward_program, place, /*is_grad=*/false, program_id, global_inner_scope); } // Step 3. get all eager gc vars std::set skip_eager_delete_vars = paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet( *backward_program); // all out_vars are skip_eager_var skip_eager_delete_vars.insert(output_names.begin(), output_names.end()); skip_eager_delete_vars.insert(dout_names.begin(), dout_names.end()); // update interpretercore skip_gc_var interpreter_core->SetSkipGcVars(skip_eager_delete_vars); std::set input_vars; input_vars.insert(input_names.begin(), input_names.end()); interpreter_core->SetJitInputVars(input_vars); if (VLOG_IS_ON(6)) { std::stringstream s; s << "skip_eager_delete_vars: "; for (auto name : skip_eager_delete_vars) { s << name << " "; } VLOG(6) << s.str(); } interpretercore_info_cache.UpdateSkipEagerDeleteVars( program_id, global_inner_scope, false, skip_eager_delete_vars); VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size(); } else { paddle::platform::RecordEvent record_event( "get_interpretercore_cahce", paddle::platform::TracerEventType::UserDefined, 1); VLOG(2) << "Get interpretercore cahce by program:" << program_id; // Step 1. get cache interpretercore auto &cached_value = interpretercore_info_cache.GetMutable( program_id, global_inner_scope, /*is_grad=*/false); interpreter_core = cached_value.core_; // Step 2. update scope for cache interpretercore details::ShareTensorsIntoScope(x, global_inner_scope); details::ShareTensorsIntoScope(params, global_inner_scope); if (interpreter_core->GetVariableScope()->GetMutableScope() != global_inner_scope) { details::BuildScopeByBlock( *interpreter_core.get(), *forward_global_block, global_inner_scope); interpreter_core->reset_scope(global_inner_scope); } } // interpretercore run if (forward_global_block->OpSize() > 0) { paddle::platform::RecordEvent record_event( "interpreter_core_run", paddle::platform::TracerEventType::UserDefined, 1); interpreter_core->Run({}); } { paddle::platform::RecordEvent record_event( "fetch_and_gc", paddle::platform::TracerEventType::UserDefined, 1); // Get Output details::ShareTensorsFromScopeWithPartialBlock( out, *forward_global_block, *backward_global_block, global_inner_scope); details::ShareTensorsFromScopeWithPartialBlock(dout, *forward_global_block, *backward_global_block, global_inner_scope); VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front()); if (is_test || !require_any_grad) { VLOG(4) << "don't require any grad, set this scope can reused"; VLOG(4) << "is_test: " << is_test << ", require_any_grad: " << require_any_grad; global_inner_scope->SetCanReused(true); details::GcScope(global_inner_scope); } else { VLOG(4) << "not test, set this scope can not reused"; global_inner_scope->SetCanReused(false); } } #ifdef PADDLE_WITH_DNNL if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place); #endif } inline void RunProgramGradAPI( const std::vector &out_grad, const std::vector &step_scope, // NOLINT const paddle::framework::AttributeMap &attrs, std::vector &x_grad, // NOLINT std::vector ¶ms_grad // NOLINT ) { // if all output vars are set to stop_gradient, grad op no need to executed if (x_grad.empty() && params_grad.empty()) return; auto *out_scope_vec = &step_scope; PADDLE_ENFORCE_EQ( out_scope_vec->size(), 1, paddle::platform::errors::InvalidArgument( "The OutScope of RunProgramGradOp should only hold one scope.")); paddle::framework::Scope *global_inner_scope = out_scope_vec->front(); int64_t program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id")); auto place = egr::Controller::Instance().GetExpectedPlace(); VLOG(2) << "RunProgramGradOp use interpretercore to execute program."; VLOG(4) << "global_inner_scope:" << global_inner_scope; auto *forward_global_block = PADDLE_GET_CONST( paddle::framework::BlockDesc *, attrs.at("forward_global_block")); auto *backward_global_block = PADDLE_GET_CONST( paddle::framework::BlockDesc *, attrs.at("backward_global_block")); auto *backward_program = backward_global_block->Program(); auto out_grad_names = details::GetTensorsName(out_grad); auto &interpretercore_info_cache = paddle::framework::InterpreterCoreInfoCache::Instance(); std::shared_ptr interpreter_core = nullptr; if (!interpretercore_info_cache.Has( program_id, global_inner_scope, /*is_grad=*/true)) { paddle::platform::RecordEvent record_event( "create_new_interpretercore", paddle::platform::TracerEventType::UserDefined, 1); VLOG(2) << "No interpretercore cahce, so create a new interpretercore"; details::ShareTensorsIntoScope(out_grad, global_inner_scope); if (FLAGS_enable_new_ir_in_executor) { auto res = paddle::framework::ConstructBackwardIrProgram(backward_global_block, out_grad, x_grad, params_grad, global_inner_scope); interpreter_core = paddle::framework::CreateNewIRInterpreterCoreInfoToCache( std::move(res), place, /*is_grad=*/true, program_id, global_inner_scope); } else { interpreter_core = paddle::framework::CreateProgramInterpreterCoreInfoToCache( *backward_program, place, /*is_grad=*/true, program_id, global_inner_scope); } // share threadpool // NOTE(zhiqiu): this only works interpreter_core is executed strictly // after the related fwd_interpreter_core. if (interpretercore_info_cache.Has(program_id, global_inner_scope, false)) { auto fwd_interpreter_core = interpretercore_info_cache .GetMutable(program_id, global_inner_scope, /*is_grad=*/false) .core_; interpreter_core->ShareWorkQueueFrom(fwd_interpreter_core); VLOG(4) << "Share workqueue from " << fwd_interpreter_core.get() << " to " << interpreter_core.get(); } std::vector x_grad_names; std::vector param_grad_names; if (!x_grad.empty()) { x_grad_names = details::GetTensorsName(x_grad); } if (!params_grad.empty()) { param_grad_names = details::GetTensorsName(params_grad); } // get all eager gc vars std::set skip_eager_delete_vars; // all out_vars are skip_eager_var skip_eager_delete_vars.insert(x_grad_names.begin(), x_grad_names.end()); // initialize skip gc vars by forward_program and backward_program paddle::framework::details::AppendSkipDeletionVars(param_grad_names, &skip_eager_delete_vars); interpreter_core->SetSkipGcVars(skip_eager_delete_vars); interpretercore_info_cache.UpdateSkipEagerDeleteVars( program_id, global_inner_scope, /*is_grad=*/true, skip_eager_delete_vars); VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size(); } else { paddle::platform::RecordEvent record_event( "get_interpretercore_cahce", paddle::platform::TracerEventType::UserDefined, 1); VLOG(2) << "Get interpretercore cahce by program:" << program_id; auto &cached_value = interpretercore_info_cache.GetMutable( program_id, global_inner_scope, /*is_grad=*/true); interpreter_core = cached_value.core_; // update scope details::ShareTensorsIntoScope(out_grad, global_inner_scope); if (interpreter_core->GetVariableScope()->GetMutableScope() != global_inner_scope) { details::BuildScopeByBlock( *interpreter_core.get(), *backward_global_block, global_inner_scope); interpreter_core->reset_scope(global_inner_scope); } } if (backward_global_block->OpSize() > 0) { paddle::platform::RecordEvent record_event( "interpreter_core_run", paddle::platform::TracerEventType::UserDefined, 1); // Debug info: scope info when run end VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front()); interpreter_core->Run({}); } { paddle::platform::RecordEvent record_event( "fetch_and_gc", paddle::platform::TracerEventType::UserDefined, 1); // Step 4. get outputs details::ShareTensorsFromScopeWithPartialBlock(x_grad, *forward_global_block, *backward_global_block, global_inner_scope); details::ShareTensorsFromScopeWithPartialBlock(params_grad, *forward_global_block, *backward_global_block, global_inner_scope); VLOG(4) << "after backward gc all vars"; global_inner_scope->SetCanReused(true); details::GcScope(global_inner_scope); } } class GradNodeRunProgram : public egr::GradNodeBase { public: GradNodeRunProgram(size_t bwd_in_slot_num, size_t bwd_out_slot_num) : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {} ~GradNodeRunProgram() { if (!executed_) { auto *out_scope_vec = &step_scope_; VLOG(4) << "~GradNodeRunProgram"; // Normally out_scope_vec.size() == 1. for safty, we add for-loop here. for (size_t i = 0; i < out_scope_vec->size(); ++i) { paddle::framework::Scope *global_inner_scope = out_scope_vec->at(i); global_inner_scope->SetCanReused(true); details::GcScope(global_inner_scope); VLOG(4) << "global_inner_scope SetCanReused"; } } } // Functor: perform backward computations virtual paddle::small_vector, egr::kSlotSmallVectorSize> operator()(paddle::small_vector, egr::kSlotSmallVectorSize> &grads, // NOLINT bool create_graph UNUSED, bool is_new_grad UNUSED) override { VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram"; paddle::small_vector, egr::kSlotSmallVectorSize> hooked_grads = GradNodeRunProgram::ApplyGradientHooks(grads); PADDLE_ENFORCE_EQ(hooked_grads.size(), 1, paddle::platform::errors::InvalidArgument( "The hooked_grads.size() of RunProgramGradOp should " "be equal to 1.")); std::vector x_grad; std::vector params_grad; std::vector x_grad_ptr; std::vector params_grad_ptr; { paddle::platform::RecordEvent record_event( "construct_grad_tensor", paddle::platform::TracerEventType::UserDefined, 1); egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&hooked_grads[0], this->InputMeta()[0]); VLOG(3) << "hooked_grads[0].size() : " << hooked_grads[0].size(); ConstructXGradTensors(x_, &x_grad); ConstructParamGradTensors(params_, ¶ms_grad); for (auto &i : x_grad) { x_grad_ptr.emplace_back(&i); } for (auto &i : params_grad) { if (i.defined()) { params_grad_ptr.emplace_back(&i); } } } auto out_grad_names = PADDLE_GET_CONST(std::vector, attrs_.at("out_grad_names")); PADDLE_ENFORCE_EQ(hooked_grads[0].size(), out_grad_names.size(), paddle::platform::errors::InvalidArgument( "The hooked_grads[0].size() and " "out_grad_names.size() should be equal.")); for (size_t i = 0; i < out_grad_names.size(); ++i) { hooked_grads[0][i].set_name(out_grad_names[i]); } RunProgramGradAPI( hooked_grads[0], step_scope_, attrs_, x_grad_ptr, params_grad_ptr); VLOG(3) << "End Eager Backward Node: GradNodeRunProgram"; executed_ = true; return {x_grad, params_grad}; } void ClearTensorWrappers() override { x_.clear(); params_.clear(); SetIsTensorWrappersCleared(true); } // SetAttrMap void SetAttrMap(const paddle::framework::AttributeMap &attrs) { attrs_ = attrs; } void SetFwdX(const std::vector &tensors) { x_ = tensors; } void SetFwdParams(const std::vector &tensors) { params_ = tensors; } void SetStepScope(const std::vector &scopes) { step_scope_ = scopes; } protected: void ConstructXGradTensors(const std::vector &x, std::vector *x_grad) { auto x_grad_names = PADDLE_GET_CONST(std::vector, attrs_.at("x_grad_names")); PADDLE_ENFORCE_EQ( x.size(), x_grad_names.size(), paddle::platform::errors::InvalidArgument( "The x.size() and x_grad_names.size() should be equal. " "But received x.size() = %d, x_grad_names.size() = %d", x.size(), x_grad_names.size())); // TODO(dev): Need an elegant way to determine inforamtion of grad_tensor, // such as: name, tensor type(DenseTensor or SelectedRows). for (size_t i = 0; i < x.size(); i++) { if (x[i].is_dense_tensor()) { x_grad->emplace_back(std::make_shared()); } else if (x[i].is_selected_rows()) { x_grad->emplace_back(std::make_shared()); } x_grad->back().set_name(x_grad_names[i]); } } void ConstructParamGradTensors(const std::vector ¶ms, std::vector *param_grads) { auto param_grad_names = PADDLE_GET_CONST(std::vector, attrs_.at("param_grad_names")); PADDLE_ENFORCE_EQ(params.size(), param_grad_names.size(), paddle::platform::errors::InvalidArgument( "The param.size() and " "param_grad_names.size() should be equal.")); for (size_t i = 0; i < params.size(); ++i) { auto &p = params[i]; auto &p_grad = egr::EagerUtils::unsafe_autograd_meta(p)->Grad(); // In eager mode, the number of param_grad should be the same as // param, so here an empty Tensor is added for the param with // stop_gradient=True if (!p_grad.defined()) { param_grads->emplace_back(); } else if (p_grad.is_dense_tensor()) { param_grads->emplace_back(std::make_shared()); } else if (p_grad.is_selected_rows()) { param_grads->emplace_back(std::make_shared()); } param_grads->back().set_name(param_grad_names[i]); } } std::shared_ptr Copy() const override { auto copied_node = std::shared_ptr(new GradNodeRunProgram(*this)); return copied_node; } private: // TensorWrappers std::vector x_; std::vector params_; std::vector step_scope_; // Attribute Map paddle::framework::AttributeMap attrs_; bool executed_{false}; };