# **安装说明**
本说明将指导您在*64位台式机或笔记本电脑*上编译和安装PaddlePaddle,目前PaddlePaddle支持以下环境:
* *Ubuntu 14.04 /16.04 /18.04*
* *CentOS 7 / 6*
* *MacOS 10.12 / 10.13*
* *Windows7 / 8/ 10(专业版/企业版)*
请确保您的环境满足以上条件
如在安装或编译过程中遇到问题请参见[FAQ](#FAQ)
## **安装PaddlePaddle**
* Ubuntu下安装PaddlePaddle
* CentOS下安装PaddlePaddle
* MacOS下安装PaddlePaddle
* Windows下安装PaddlePaddle
***
### **Ubuntu下安装PaddlePaddle**
本说明将介绍如何在*64位台式机或笔记本电脑*以及Ubuntu系统下安装PaddlePaddle,我们支持的Ubuntu系统需满足以下要求:
请注意:在其他系统上的尝试可能会导致安装失败。
* *Ubuntu 14.04 /16.04 /18.04*
#### 确定要安装的PaddlePaddle版本
* 仅支持CPU的PaddlePaddle。如果您的计算机没有 NVIDIA® GPU,则只能安装此版本。如果您的计算机有GPU,
也推荐您先安装CPU版本的PaddlePaddle,来检测您本地的环境是否适合。
* 支持GPU的PaddlePaddle。为了使PaddlePaddle程序运行更加迅速,我们通过GPU对PaddlePaddle程序进行加速,但安装GPU版本的PaddlePaddle需要先拥有满足以下条件的NVIDIA® GPU(具体安装流程和配置请务必参见NVIDIA官方文档:[For CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/),[For cuDNN](https://docs.nvidia.com/deeplearning/sdk/cudnn-install/))
* *CUDA 工具包9.0配合cuDNN v7*
* *CUDA 工具包8.0配合cuDNN v7*
* *GPU运算能力超过1.0的硬件设备*
#### 选择如何安装PaddlePaddle
在Ubuntu的系统下我们提供4种安装方式:
* Docker安装
* pip安装
* 源码编译安装
* Docker源码编译安装
我们更加推荐**使用Docker进行安装**,因为我们在把工具和配置都安装在一个 Docker image 里,这样如果遇到问题,其他人可以复现问题以便帮助。另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
**使用pip安装**,我们为您提供pip安装方法,但它更依赖您的本机环境,可能会出现和您本机环境相关的一些问题。
从[**源码编译安装**](#ubt_source)以及[**使用Docker进行源码编译安装**](#ubt_docker),这是一种通过将PaddlePaddle源代码编译成为二进制文件,然后在安装这个二进制文件的过程,相比使用我们为您编译过的已经通过测试的二进制文件形式的PaddlePaddle,手动编译更为复杂,我们将在说明的最后详细为您解答。
##### ***使用Docker进行安装***
为了更好的使用Docker并避免发生问题,我们推荐使用**最高版本的Docker**,关于**安装和使用Docker**的细节请参阅Docker[官方文档](https://docs.docker.com/install/)。
> 请注意,要安装和使用支持 GPU 的PaddlePaddle版本,您必须先安装[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)
如果已经**正确安装Docker**,即可以开始**使用Docker安装PaddlePaddle**
1. 使用以下指令拉取我们为您预安装好PaddlePaddle的镜像:
* 对于需要**CPU版本的PaddlePaddle**的用户请使用以下指令拉取我们为您预安装好*PaddlePaddle For CPU*的镜像:
`docker pull hub.baidubce.com/paddlepaddle/paddle:0.15.0`
* 对于需要**GPU版本的PaddlePaddle**的用户请使用以下指令拉取我们为您预安装好*PaddlePaddle For GPU*的镜像:
`docker pull hub.baidubce.com/paddlepaddle/paddle:0.15.0-gpu-cuda9.0-cudnn7`
* 您也可以通过以下指令拉取任意的我们提供的Docker镜像:
`docker pull hub.baidubce.com/paddlepaddle/paddle:[tag]`
> (请把[tag]替换为[镜像表](#dockers)中的内容)
2. 使用以下指令用已经拉取的镜像构建并进入Docker容器:
`docker run --name [Name of container] -it -v $PWD:/paddle
##### ***使用pip安装PaddlePaddle***
您可以直接粘贴以下命令到命令行来安装PaddlePaddle(适用于ubuntu16.04及以上安装CPU-ONLY的版本),如果出现问题,您可以参照后面的解释对命令作出适应您系统的更改:
apt update && apt install -y python-dev python-pip && pip install paddlepaddle
首先,我们使用以下指令来**检测本机的环境**是否适合安装PaddlePaddle:
`uname -m && cat /etc/*release`
> 上面的命令将会显示本机的操作系统和位数信息,请确保您的计算机和本教程的要求一致。
其次,您的电脑需要满足以下要求:
* Python2.7.x (dev)
* Pip >= 9.0.1
> 您的Ubuntu上可能已经安装pip请使用pip -V来确认我们建议使用pip 9.0.1或更高版本来安装
更新apt的源: `apt update`
使用以下命令安装或升级Python和pip到需要的版本: `sudo apt install python-dev python-pip`
> 即使您的环境中已经有Python2.7也需要安装Python dev。
现在,让我们来安装PaddlePaddle:
1. 使用pip install来安装PaddlePaddle
* 对于需要**CPU版本PaddlePaddle**的用户:`pip install paddlepaddle`
* 对于需要**GPU版本PaddlePaddle**的用户:`pip install paddlepaddle-gpu`
> 1. 为防止出现nccl.h找不到的问题请首先按照以下命令安装nccl2(这里提供的是ubuntu 16.04,CUDA8,cuDNN v7下nccl2的安装指令),更多版本的安装信息请参考NVIDIA[官方网站](https://developer.nvidia.com/nccl/nccl-download):
a. `wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb`
b. `sudo apt-get install libnccl2=2.2.13-1+cuda8.0 libnccl-dev=2.2.13-1+cuda8.0`
> 2. 如果您不规定pypi包版本号,我们默认为您提供支持Cuda 8/cuDNN v7的PaddlePaddle版本。
对于出现`Cannot uninstall 'six'.`问题的用户,可是由于您的系统中已有的Python安装问题造成的,请使用`pip install paddlepaddle --ignore-installed six`(CPU)或`pip install paddlepaddle --ignore-installed six`(GPU)解决。
* 对于有**其他要求**的用户:`pip install paddlepaddle==[版本号]`
> `版本号`参见[安装包列表](#whls)或者您如果需要获取并安装**最新的PaddlePaddle开发分支**,可以从[多版本whl包列表](#ciwhls)或者我们的[CI系统](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview) 中下载最新的whl安装包和c-api开发包并安装。如需登录,请点击“Log in as guest”。
现在您已经完成使用`pip install` 来安装的PaddlePaddle的过程。
##### ***验证安装***
安装完成后您可以使用:`python` 进入python解释器,然后使用`import paddle.fluid` 验证是否安装成功。
##### ***如何卸载PaddlePaddle***
请使用以下命令卸载PaddlePaddle:
* ***CPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle`
* ***GPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle-gpu`
### **CentOS下安装PaddlePaddle**
本说明将介绍如何在*64位台式机或笔记本电脑*以及CentOS系统下安装PaddlePaddle,我们支持的CentOS系统需满足以下要求:
请注意:在其他系统上的尝试可能会导致安装失败。
* *CentOS 6 / 7*
#### 确定要安装的PaddlePaddle版本
* 仅支持CPU的PaddlePaddle。如果您的计算机没有 NVIDIA® GPU,则只能安装此版本。如果您的计算机有GPU,
推荐您先安装CPU版本的PaddlePaddle,来检测您本地的环境是否适合。
* 支持GPU的PaddlePaddle,为了使PaddlePaddle程序运行的更加迅速,我们通过GPU对PaddlePaddle程序进行加速,但安装GPU版本的PaddlePaddle需要先拥有满足以下条件的NVIDIA® GPU(具体安装流程和配置请务必参见NVIDIA官方文档:[For CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/),[For cuDNN](https://docs.nvidia.com/deeplearning/sdk/cudnn-install/))
* *CUDA 工具包9.0配合cuDNN v7*
* *CUDA 工具包8.0配合cuDNN v7*
* *GPU运算能力超过1.0的硬件设备*
#### 选择如何安装PaddlePaddle
在CentOS的系统下我们提供4种安装方式:
* Docker安装(不支持GPU版本)
* pip安装
* 源码编译安装(不支持CentOS 6的所有版本以及CentOS 7的GPU版本)
* Docker源码编译安装(不支持GPU版本)
我们更加推荐**使用Docker进行安装**,因为我们在把工具和配置都安装在一个 Docker image 里,这样如果遇到问题,其他人可以复现问题以便帮助。另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
**使用pip安装**,我们为您提供pip安装方法,但它更依赖您的本机环境,可能会出现和您本机环境相关的一些问题。
从[**源码编译安装**](#ct_source)以及[**使用Docker进行源码编译安装**](#ct_docker),这是一种通过将PaddlePaddle源代码编译成为二进制文件,然后在安装这个二进制文件的过程,相比使用我们为您编译过的已经通过测试的二进制文件形式的PaddlePaddle,手动编译更为复杂,我们将在说明的最后详细为您解答。
##### ***使用Docker进行安装***
为了更好的使用Docker并避免发生问题,我们推荐使用**最高版本的Docker**,关于**安装和使用Docker**的细节请参阅Docker[官方文档](https://docs.docker.com/install/)
> 请注意,要安装和使用支持 GPU 的PaddlePaddle版本,您必须先安装[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)
当您已经**正确安装Docker**后你就可以开始**使用Docker安装PaddlePaddle**
1. 使用以下指令拉取我们为您预安装好PaddlePaddle的镜像:
* 对于需要**CPU版本的PaddlePaddle**的用户请使用以下指令拉取我们为您预安装好*PaddlePaddle For CPU*的镜像:
`docker pull hub.baidubce.com/paddlepaddle/paddle:0.15.0`
* 您也可以通过以下指令拉取任意的我们提供的Docker镜像:
`docker pull hub.baidubce.com/paddlepaddle/paddle:[tag]`
> (请把[tag]替换为[镜像表](#dockers)中的内容)
2. 使用以下指令用已经拉取的镜像构建并进入Docker容器:
`docker run --name [Name of container] -it -v $PWD:/paddle
##### ***使用pip安装PaddlePaddle***
您可以直接粘贴以下命令到命令行来安装PaddlePaddle(适用于CentOS7安装CPU-ONLY的版本),如果出现问题,您可以参照后面的解释对命令作出适应您系统的更改:
yum update && yum install -y epel-release && yum install -y python-devel python-pip && pip install paddlepaddle && export LD_LIBRARY_PATH=/usr/lib:$LD_LIBRARY_PATH
首先,我们使用以下指令来**检测本机的环境**是否适合安装PaddlePaddle:
`uname -m && cat /etc/*release`
> 上面的命令将会显示本机的操作系统和位数信息,请确保您的计算机和本教程的要求一致。
其次,您的计算机需要满足以下要求:
* Python2.7.x (devel)
> CentOS6需要编译Python2.7成[共享库](#FAQ)。
* Pip >= 9.0.1
> 您的CentOS上可能已经安装pip请使用pip -V来确认我们建议使用pip 9.0.1或更高版本来安装。
更新yum的源: `yum update` 并安装拓展源以安装pip: `yum install -y epel-release`
使用以下命令安装或升级Python和pip到需要的版本: `sudo yum install python-devel python-pip`
> 即使您的环境中已经有`Python2.7`也需要安装`python devel`。
下面将说明如何安装PaddlePaddle:
1. 使用pip install来安装PaddlePaddle:
* 对于需要**CPU版本PaddlePaddle**的用户:`pip install paddlepaddle`
* 对于需要**GPU版本PaddlePaddle**的用户: `pip install paddlepaddle-gpu`
> 1. 为防止出现nccl.h找不到的问题请首先按照NVIDIA[官方网站](https://developer.nvidia.com/nccl/nccl-download)的指示正确安装nccl2
> 2. 如果您不规定pypi包版本号,我们默认为您提供支持Cuda 8/cuDNN v7的PaddlePaddle版本。
对于出现`Cannot uninstall 'six'.`问题的用户,可是由于您的系统中已有的Python安装问题造 成的,请使用`pip install paddlepaddle --ignore-installed six`(CPU)或`pip install paddlepaddle-gpu --ignore-installed six`(GPU)解决。
* 对于有**其他要求**的用户:`pip install paddlepaddle==[版本号]`
> `版本号`参见[安装包列表](#whls)或者您如果需要获取并安装**最新的PaddlePaddle开发分支**,可以从我们的[CI系统](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview) 中下载最新的whl安装包和c-api开发包并安装。如需登录,请点击“Log in as guest”。
现在您已经完成通过`pip install` 来安装的PaddlePaddle的过程。
##### ***验证安装***
安装完成后您可以使用:`python` 进入Python解释器,然后使用`import paddle.fluid` 验证是否安装成功。
##### ***如何卸载PaddlePaddle***
请使用以下命令卸载PaddlePaddle:
* ***CPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle`
* ***GPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle-gpu`
### **MacOS下安装PaddlePaddle**
本说明将介绍如何在*64位台式机或笔记本电脑*以及MacOS系统下安装PaddlePaddle,我们支持的MacOS系统需满足以下要求。
请注意:在其他系统上的尝试可能会导致安装失败。
* *MacOS 10.12/10.13*
#### 确定要安装的PaddlePaddle版本
* 仅支持CPU的PaddlePaddle。
#### 选择如何安装PaddlePaddle
在MacOS的系统下我们提供3种安装方式:
* Docker安装(不支持GPU版本)
* Docker源码编译安装(不支持GPU版本)
我们更加推荐**使用Docker进行安装**,因为我们在把工具和配置都安装在一个 Docker image 里,这样如果遇到问题,其他人可以复现问题以便帮助。另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
##### ***使用Docker进行安装***
为了更好的使用Docker并避免发生问题,我们推荐使用**最高版本的Docker**,关于**安装和使用Docker**的细节请参阅Docker[官方文档](https://docs.docker.com/install/)。
> 请注意,在MacOS系统下登陆docker需要使用您的dockerID进行登录,否则将出现`Authenticate Failed`错误。
如果已经**正确安装Docker**,即可以开始**使用Docker安装PaddlePaddle**
1. 使用以下指令拉取我们为您预安装好PaddlePaddle的镜像:
* 对于需要**CPU版本的PaddlePaddle**的用户请使用以下指令拉取我们为您预安装好*PaddlePaddle For CPU*的镜像:
`docker pull hub.baidubce.com/paddlepaddle/paddle:0.15.0`
* 您也可以通过以下指令拉取任意的我们提供的Docker镜像:
`docker pull hub.baidubce.com/paddlepaddle/paddle:[tag]`
> (请把[tag]替换为[镜像表](#dockers)中的内容)
2. 使用以下指令用已经拉取的镜像构建并进入Docker容器:
`docker run --name [Name of container] -it -v $PWD:/paddle
##### ***验证安装***
安装完成后您可以使用:`python` 进入python解释器,然后使用`import paddle.fluid` 验证是否安装成功。
##### ***如何卸载PaddlePaddle***
请使用以下命令卸载PaddlePaddle:
* ***CPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle`
### **Windows下安装PaddlePaddle**
本说明将介绍如何在*64位台式机或笔记本电脑*以及Windows系统下安装PaddlePaddle,我们支持的Windows系统需满足以下要求。
请注意:在其他系统上的尝试可能会导致安装失败。
* *Windows 7/8 and Windows 10 专业版/企业版*
#### 确定要安装的PaddlePaddle版本
* Windows下我们目前仅提供支持CPU的PaddlePaddle。
#### 选择如何安装PaddlePaddle
在Windows系统下请使用我们为您提供的[一键安装包](http://paddle-windows.bj.bcebos.com/PaddlePaddle-windows.zip)进行安装
> 我们提供的一键安装包将基于Docker为您进行便捷的安装流程
我们之所以使用**基于Docker的安装方式**,是因为我们在把工具和配置都安装在一个 Docker image 里,这样如果遇到问题,其他人可以复现问题以便帮助。另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
##### ***验证安装***
安装完成后您可以使用:`python` 进入python解释器,然后使用`import paddle.fluid` 验证是否安装成功。
##### ***如何卸载PaddlePaddle***
请使用以下命令卸载PaddlePaddle:
* ***CPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle`
## **从源码编译PaddlePaddle**
我们也为您提供了从源码编译的方式,但不推荐您使用这种方式,这是因为您的本机环境多种多样,在编译源码时易出现复杂的本说明中覆盖以外问题而造成安装失败。
***
### **Ubuntu下从源码编译PaddlePaddle**
本说明将介绍如何在*64位台式机或笔记本电脑*以及Ubuntu系统下编译PaddlePaddle,我们支持的Ubuntu系统需满足以下要求:
* Ubuntu 14.04/16.04/18.04(这涉及到相关工具是否能被正常安装)
#### 确定要编译的PaddlePaddle版本
* **仅支持CPU的PaddlePaddle**,如果您的系统没有 NVIDIA® GPU,则必须安装此版本。而此版本较GPU版本更加容易安
因此即使您的计算机上拥有GPU我们也推荐您先安装CPU版本的PaddlePaddle来检测您本地的环境是否适合。
* **支持GPU的PaddlePaddle**,为了使得PaddlePaddle程序运行的更加迅速,我们通常使用GPU对PaddlePaddle程序进行加速,但安装GPU版本的PaddlePaddle需要先拥有满足以下条件的NVIDIA® GPU(具体安装流程和配置请务必参见NVIDIA官方文档:[For CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/),[For cuDNN](https://docs.nvidia.com/deeplearning/sdk/cudnn-install/))
* *CUDA 工具包9.0配合cuDNN v7*
* *CUDA 工具包8.0配合cuDNN v7*
* *GPU运算能力超过1.0的硬件设备*
#### 选择如何编译PaddlePaddle
在Ubuntu的系统下我们提供2种编译方式:
* Docker源码编译
* 直接本机源码编译
我们更加推荐**使用Docker进行编译**,因为我们在把工具和配置都安装在一个 Docker image 里。这样如果遇到问题,其他人可以复现问题以便帮助。另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。有人用虚拟机来类比 Docker。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
我们也提供了可以从**本机直接源码编译**的方法,但是由于在本机上的情况更加复杂,我们只对特定系统提供了支持。
##### ***使用Docker进行编译***
为了更好的使用Docker并避免发生问题,我们推荐使用**最高版本的Docker**,关于**安装和使用Docker**的细节请参阅Docker[官方文档](https://docs.docker.com/install/)
> 请注意,要安装和使用支持 GPU 的PaddlePaddle版本,您必须先安装[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)
当您已经**正确安装Docker**后你就可以开始**使用Docker编译PaddlePaddle**:
1. 请首先选择您希望储存PaddlePaddle的路径,然后在该路径下使用以下命令将PaddlePaddle的源码从github克隆到本地当前目录下名为Paddle的文件夹中:
`git clone https://github.com/PaddlePaddle/Paddle.git`
2. 进入Paddle目录下: `cd Paddle`
3. 利用我们提供的镜像(使用该命令您可以不必提前下载镜像):
`docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-dev /bin/bash`
> --name paddle-test为您创建的Docker容器命名为paddle-test,-v $PWD:/paddle 将当前目录挂载到Docker容器中的/paddle目录下(Linux中PWD变量会展开为当前路径的[绝对路径](https://baike.baidu.com/item/绝对路径/481185)),-it 与宿主机保持交互状态,`hub.baidubce.com/paddlepaddle/paddle:latest-dev` 使用名为`hub.baidubce.com/paddlepaddle/paddle:latest-dev`的镜像创建Docker容器,/bin/bash 进入容器后启动/bin/bash命令。
4. 进入Docker后进入paddle目录下:`cd paddle`
5. 切换到较稳定release分支下进行编译:
`git checkout release/0.15.0`
6. 创建并进入/paddle/build路径下:
`mkdir -p /paddle/build && cd /paddle/build`
7. 使用以下命令安装相关依赖:
`pip install protobuf==3.1.0`
> 安装protobuf 3.1.0。
`apt install patchelf`
> 安装patchelf,PatchELF 是一个小而实用的程序,用于修改ELF可执行文件的动态链接器和RPATH。
8. 执行cmake:
>具体编译选项含义请参见[编译选项表](#Compile)
* 对于需要编译**CPU版本PaddlePaddle**的用户:
`cmake .. -DWITH_FLUID_ONLY=ON -DWITH_GPU=OFF -DWITH_TESTING=OFF`
* 对于需要编译**GPU版本PaddlePaddle**的用户:
`cmake .. -DWITH_FLUID_ONLY=ON -DWITH_GPU=ON -DWITH_TESTING=OFF`
9. 执行编译:
`make -j$(nproc)`
> 使用多核编译
10. 编译成功后进入`/paddle/build/python/dist`目录下找到生成的`.whl`包: `cd /paddle/build/python/dist`
11. 在当前机器或目标机器安装编译好的`.whl`包:
`pip install (whl包的名字)`
至此您已经成功使用Docker安装PaddlePaddle,您只需要进入Docker容器后运行PaddlePaddle即可,更多Docker使用请参见[Docker官方文档](https://docs.docker.com)。
> 注:PaddlePaddle Docker镜像为了减小体积,默认没有安装`vim`,您可以在容器中执行 `apt-get install -y vim` 安装后,在容器中编辑代码。
恭喜您,现在您已经完成使用Docker编译PaddlePaddle的过程。
##### ***本机编译***
1. 检查您的计算机和操作系统是否符合我们支持的编译标准: `uname -m && cat /etc/*release`
2. 更新`apt`的源: `apt update`
2. 我们支持使用virtualenv进行编译安装,首先请使用以下命令创建一个名为`paddle-venv`的虚环境:
* 安装Python-dev: `apt install python-dev`
* 安装pip: `apt install python-pip` (请保证拥有9.0.1及以上版本的pip)
* 安装虚环境`virtualenv`以及`virtualenvwrapper`并创建名为`paddle-venv`的虚环境:
1. `apt install virtualenv` 或 `pip install virtualenv`
2. `apt install virtualenvwrapper` 或 `pip install virtualenvwrapper`
3. 找到`virtualenvwrapper.sh`: `find / -name virtualenvwrapper.sh`
4. 查看`virtualenvwrapper.sh`中的安装方法: `cat virtualenvwrapper.sh`
5. 按照`virtualenvwrapper.sh`中的安装方法安装`virtualwrapper`
6. 创建名为`paddle-venv`的虚环境: `mkvirtualenv paddle-venv`
3. 进入虚环境:`workon paddle-venv`
4. **执行编译前**请您确认在虚环境中安装有[编译依赖表](#third_party)中提到的相关依赖:
* 这里特别提供`patchELF`的安装方法,其他的依赖可以使用`apt install`或者`pip install` 后跟依赖名称和版本安装:
`apt install patchelf`
> 不能使用apt安装的用户请参见patchElF github[官方文档](https://gist.github.com/ruario/80fefd174b3395d34c14)
5. 将PaddlePaddle的源码clone在当下目录下的Paddle的文件夹中,并进入Padde目录下:
- `git clone https://github.com/PaddlePaddle/Paddle.git`
- `cd Paddle`
6. 切换到较稳定release分支下进行编译:
`git checkout release/0.15.0`
7. 并且请创建并进入一个叫build的目录下:
`mkdir build && cd build`
8. 执行cmake:
>具体编译选项含义请参见[编译选项表](#Compile)
* 对于需要编译**CPU版本PaddlePaddle**的用户:
`cmake .. -DWITH_FLUID_ONLY=ON -DWITH_GPU=OFF -DWITH_TESTING=OFF`.
* 对于需要编译**GPU版本PaddlePaddle**的用户:(*仅支持ubuntu16.04/14.04*)
1. 请确保您已经正确安装nccl2,或者按照以下指令安装nccl2(这里提供的是ubuntu 16.04,CUDA8,cuDNN7下nccl2的安装指令),更多版本的安装信息请参考NVIDIA[官方网站](https://developer.nvidia.com/nccl/nccl-download):
i. `wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb`
ii. `sudo apt-get install libnccl2=2.2.13-1+cuda8.0 libnccl-dev=2.2.13-1+cuda8.0`
2. 如果您已经正确安装了`nccl2`,就可以开始cmake了:
`cmake .. -DWITH_FLUID_ONLY=ON -DWITH_GPU=ON -DWITH_TESTING=OFF`
9. 使用以下命令来编译:
`make -j$(nproc)`
10. 编译成功后进入`/paddle/build/python/dist`目录下找到生成的`.whl`包: `cd /paddle/build/python/dist`
11. 在当前机器或目标机器安装编译好的`.whl`包:
`pip install (whl包的名字)`
恭喜您,现在您已经完成使本机编译PaddlePaddle的过程了。
##### ***验证安装***
安装完成后您可以使用:`python` 进入Python解释器,然后使用`import paddle.fluid` 验证是否安装成功。
##### ***如何卸载PaddlePaddle***
请使用以下命令卸载PaddlePaddle:
* ***CPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle`
* ***GPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle-gpu`
### **CentOS下从源码编译PaddlePaddle**
本说明将介绍如何在*64位台式机或笔记本电脑*以及CentOS系统下编译PaddlePaddle,我们支持的Ubuntu系统需满足以下要求:
* CentOS 7 / 6(这涉及到相关工具是否能被正常安装)
#### 确定要编译的PaddlePaddle版本
* **仅支持CPU的PaddlePaddle**。
#### 选择如何编译PaddlePaddle
我们在CentOS的系统下提供2种编译方式:
* Docker源码编译(不支持CentOS 6 / 7的GPU版本)
* 直接本机源码编译(不支持CentOS 6的全部版本以及CentOS 7的GPU版本)
我们更加推荐**使用Docker进行编译**,因为我们在把工具和配置都安装在一个 Docker image 里。这样如果遇到问题,其他人可以复现问题以便帮助。另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
同样对于那些出于各种原因不能够安装Docker的用户我们也提供了可以从**本机直接源码编译**的方法,但是由于在本机上的情况更加复杂,因此我们只支持特定的系统。
##### ***使用Docker进行编译***
为了更好的使用Docker并避免发生问题,我们推荐使用**最高版本的Docker**,关于**安装和使用Docker**的细节请参阅Docker[官方文档](https://docs.docker.com/install/)。
当您已经**正确安装Docker**后你就可以开始**使用Docker编译PaddlePaddle**啦:
1. 请首先选择您希望储存PaddlePaddle的路径,然后在该路径下使用以下命令将PaddlePaddle的源码从github克隆到本地当前目录下名为Paddle的文件夹中:
`git clone https://github.com/PaddlePaddle/Paddle.git`
2. 进入Paddle目录下: `cd Paddle`
3. 利用我们提供的镜像(使用该命令您可以不必提前下载镜像):
`docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-dev /bin/bash`
> --name paddle-test为您创建的Docker容器命名为paddle-test,-v $PWD:/paddle 将当前目录挂载到Docker容器中的/paddle目录下(Linux中PWD变量会展开为当前路径的[绝对路径](https://baike.baidu.com/item/绝对路径/481185)),-it 与宿主机保持交互状态,`hub.baidubce.com/paddlepaddle/paddle` 使用名为`hub.baidubce.com/paddlepaddle/paddle:latest-dev`的镜像创建Docker容器,/bin/bash 进入容器后启动/bin/bash命令。
4. 进入Docker后进入paddle目录下:`cd paddle`
5. 切换到较稳定release分支下进行编译:
`git checkout release/0.15.0`
6. 创建并进入/paddle/build路径下:
`mkdir -p /paddle/build && cd /paddle/build`
7. 使用以下命令安装相关依赖:
`pip install protobuf==3.1.0`
> 安装protobuf 3.1.0。
`apt install patchelf`
> 安装patchelf,PatchELF 是一个小而实用的程序,用于修改ELF可执行文件的动态链接器和RPATH。
8. 执行cmake:
>具体编译选项含义请参见[编译选项表](#Compile)
* 对于需要编译**CPU版本PaddlePaddle**的用户:
`cmake .. -DWITH_FLUID_ONLY=ON -DWITH_GPU=OFF -DWITH_TESTING=OFF`
>> 我们目前不支持CentOS下GPU版本PaddlePaddle的编译
9. 执行编译:
`make -j$(nproc)`
> 使用多核编译
10. 编译成功后进入`/paddle/build/python/dist`目录下找到生成的`.whl`包: `cd /paddle/build/python/dist`
11. 在当前机器或目标机器安装编译好的`.whl`包:
`pip install (whl包的名字)`
至此您已经成功使用Docker安装PaddlePaddle,您只需要进入Docker容器后运行PaddlePaddle即可,更多Docker使用请参见[Docker官方文档](https://docs.docker.com)。
> 注:PaddlePaddle Docker镜像为了减小体积,默认没有安装`vim`,您可以在容器中执行 `apt-get install -y vim` 安装后,在容器中编辑代码。
恭喜您,现在您已经完成使用Docker编译PaddlePaddle的过程。
##### ***本机编译***
1. 检查您的计算机和操作系统是否符合我们支持的编译标准: `uname -m && cat /etc/*release`
2. 更新`yum`的源: `yum update`, 并添加必要的yum源:`yum install -y epel-release`
3. 安装必要的工具`bzip2`以及`make`: `yum install -y bzip2` , `yum install -y make`
2. 我们支持使用virtualenv进行编译安装,首先请使用以下命令创建一个名为`paddle-venv`的虚环境:
* 安装Python-dev: `yum install python-devel`
* 安装pip: `yum install python-pip` (请保证拥有9.0.1及以上的pip版本)
* 安装虚环境`virtualenv`以及`virtualenvwrapper`并创建名为`paddle-venv`的虚环境:
1. `pip install virtualenv` 或 `pip install virtualenv`
2. `pip install virtualenvwrapper` 或 `pip install virtualenvwrapper`
3. 找到`virtualenvwrapper.sh`: `find / -name virtualenvwrapper.sh`
4. 查看`virtualenvwrapper.sh`中的安装方法: `cat vitualenvwrapper.sh`
5. 安装`virtualwrapper`
6. 创建名为`paddle-venv`的虚环境: `mkvirtualenv paddle-venv`
3. 进入虚环境:`workon paddle-venv`
4. **执行编译前**请您确认在虚环境中安装有[编译依赖表](#third_party)中提到的相关依赖:
* 这里特别提供`patchELF`的安装方法,其他的依赖可以使用`yum install`或者`pip install` 后跟依赖名称和版本安装:
`yum install patchelf`
> 不能使用apt安装的用户请参见patchElF github[官方文档](https://gist.github.com/ruario/80fefd174b3395d34c14)
5. 将PaddlePaddle的源码clone在当下目录下的Paddle的文件夹中,并进入Padde目录下:
- `git clone https://github.com/PaddlePaddle/Paddle.git`
- `cd Paddle`
6. 切换到较稳定release分支下进行编译:
`git checkout release/0.15.0`
7. 并且请创建并进入一个叫build的目录下:
`mkdir build && cd build`
8. 执行cmake:
>具体编译选项含义请参见[编译选项表](#Compile)
* 对于需要编译**CPU版本PaddlePaddle**的用户:
`cmake .. -DWITH_FLUID_ONLY=ON -DWITH_GPU=OFF -DWITH_TESTING=OFF`.
9. 使用以下命令来编译:
`make -j$(nproc)`
10. 编译成功后进入`/paddle/build/python/dist`目录下找到生成的`.whl`包: `cd /paddle/build/python/dist`
11. 在当前机器或目标机器安装编译好的`.whl`包:
`pip install (whl包的名字)`
恭喜您,现在您已经完成使本机编译PaddlePaddle的过程了。
##### ***验证安装***
安装完成后您可以使用:`python` 进入Python解释器,然后使用`import paddle.fluid` 验证是否安装成功。
##### ***如何卸载PaddlePaddle***
请使用以下命令卸载PaddlePaddle:
* ***CPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle`
### **MacOS下从源码编译PaddlePaddle**
本说明将介绍如何在*64位台式机或笔记本电脑*以及MacOS系统下编译PaddlePaddle,我们支持的MacOS系统需满足以下要求:
* MacOS 10.12/10.13(这涉及到相关工具是否能被正常安装)
#### 确定要编译的PaddlePaddle版本
* **仅支持CPU的PaddlePaddle**。
#### 选择如何编译PaddlePaddle
在MacOS 10.12/10.13的系统下我们提供1种编译方式:
* Docker源码编译
我们更加推荐**使用Docker进行编译**,因为我们在把工具和配置都安装在一个 Docker image 里。这样如果遇到问题,其他人可以复现问题以便帮助。另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
##### ***使用Docker进行编译***
为了更好的使用Docker并避免发生问题,我们推荐使用**最高版本的Docker**,关于**安装和使用Docker**的细节请参阅Docker[官方文档](https://docs.docker.com/install/)。
> 请注意,在MacOS系统下登陆docker需要使用您的dockerID进行登录,否则将出现`Authenticate Failed`错误。
当您已经**正确安装Docker**后你就可以开始**使用Docker编译PaddlePaddle**啦:
1. 进入Mac的终端
2. 请选择您希望储存PaddlePaddle的路径,然后在该路径下使用以下命令将PaddlePaddle的源码从github克隆到本地当前目录下名为Paddle的文件夹中:
`git clone https://github.com/PaddlePaddle/Paddle.git`
3. 进入Paddle目录下: `cd Paddle`
4. 利用我们提供的镜像(使用该命令您可以不必提前下载镜像):
`docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-dev /bin/bash`
> --name paddle-test为您创建的Docker容器命名为paddle-test,-v $PWD:/paddle 将当前目录挂载到Docker容器中的/paddle目录下(Linux中PWD变量会展开为当前路径的[绝对路径](https://baike.baidu.com/item/绝对路径/481185)),-it 与宿主机保持交互状态,`hub.baidubce.com/paddlepaddle/paddle:latest-dev` 使用名为`hub.baidubce.com/paddlepaddle/paddle:latest-dev`的镜像创建Docker容器,/bin/bash 进入容器后启动/bin/bash命令。
5. 进入Docker后进入paddle目录下:`cd paddle`
7. 切换到较稳定release分支下进行编译:
`git checkout release/0.15.0`
8. 创建并进入/paddle/build路径下:
`mkdir -p /paddle/build && cd /paddle/build`
9. 使用以下命令安装相关依赖:
`pip install protobuf==3.1.0`
> 安装protobuf 3.1.0。
`apt install patchelf`
> 安装patchelf,PatchELF 是一个小而实用的程序,用于修改ELF可执行文件的动态链接器和RPATH。
10. 执行cmake:
>具体编译选项含义请参见[编译选项表](#Compile)
* 对于需要编译**CPU版本PaddlePaddle**的用户:
`cmake .. -DWITH_FLUID_ONLY=ON -DWITH_GPU=OFF -DWITH_TESTING=OFF`
> 我们目前不支持CentOS下GPU版本PaddlePaddle的编译
11. 执行编译:
`make -j$(nproc)`
> 使用多核编译
12. 编译成功后进入`/paddle/build/python/dist`目录下找到生成的`.whl`包: `cd /paddle/build/python/dist`
13. 在当前机器或目标机器安装编译好的`.whl`包:
`pip install (whl包的名字)`
至此您已经成功使用Docker安装PaddlePaddle,您只需要进入Docker容器后运行PaddlePaddle即可,更多Docker使用请参见[Docker官方文档](https://docs.docker.com)。
> 注:PaddlePaddle Docker镜像为了减小体积,默认没有安装`vim`,您可以在容器中执行 `apt-get install -y vim` 安装后,在容器中编辑代码。
恭喜您,现在您已经完成使用Docker编译PaddlePaddle的过程。
##### ***验证安装***
安装完成后您可以使用:`python` 进入Python解释器,然后使用`import paddle.fluid` 验证是否安装成功。
##### ***如何卸载PaddlePaddle***
请使用以下命令卸载PaddlePaddle:
* ***CPU版本的PaddlePaddle***: `pip uninstall PaddlePaddle`
## **FAQ**
- CentOS6下如何编译python2.7为共享库?
> 使用以下指令:
./configure --prefix=/usr/local/python2.7 --enable-shared
make && make install
- Ubuntu18.04下libidn11找不到?
> 使用以下指令:
apt install libidn11
- Ubuntu编译时出现大量的代码段不能识别?
> 这可能是由于cmake版本不匹配造成的,请在gcc的安装目录下使用以下指令:
apt install gcc-4.8 g++-4.8
cp gcc gcc.bak
cp g++ g++.bak
rm gcc
rm g++
ln -s gcc-4.8 gcc
ln -s g++-4.8 g++
- 遇到paddlepaddle*.whl is not a supported wheel on this platform?
> 出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。 请检查Python版本是否为2.7系列。另外最新的pip官方源中的安装包默认是manylinux1标准, 需要使用最新的pip (>9.0.0) 才可以安装。您可以执行以下指令更新您的pip:
pip install --upgrade pip
> 或者:
python -c "import pip; print(pip.pep425tags.get_supported())"
> 如果系统支持的是 linux_x86_64 而安装包是 manylinux1_x86_64 ,需要升级pip版本到最新; 如果系统支持 manylinux1_x86_64 而安装包 (本地)是 linux_x86_64, 可以重命名这个whl包为 manylinux1_x86_64 再安装。
- 使用Docker编译出现问题?
> 请参照GitHub上[Issue12079](https://github.com/PaddlePaddle/Paddle/issues/12079)
- 什么是 Docker?
如果您没有听说 Docker,可以把它想象为一个类似 virtualenv 的系统,但是虚拟的不仅仅是 Python 的运行环境。
- Docker 还是虚拟机?
有人用虚拟机来类比 Docker。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
- 为什么用 Docker?
把工具和配置都安装在一个 Docker image 里可以标准化编译环境。这样如果遇到问题,其他人可以复现问题以便帮助。
另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。
- 可以选择不用Docker吗?
当然可以。大家可以用把开发工具安装进入 Docker image 一样的方式,把这些工具安装到本机。这篇文档介绍基于 Docker 的开发流程,是因为这个流程比其他方法都更简便。
- 学习 Docker 有多难?
理解 Docker 并不难,大概花十分钟看一下[这篇文章](https://zhuanlan.zhihu.com/p/19902938)。
这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。
- 可以用 IDE 吗?
当然可以,因为源码就在本机上。IDE 默认调用 make 之类的程序来编译源码,我们只需要配置 IDE 来调用 Docker 命令编译源码即可。
很多 PaddlePaddle 开发者使用 Emacs。他们在自己的 `~/.emacs` 配置文件里加两行
(global-set-key "\C-cc" 'compile)
(setq compile-command "docker run --rm -it -v $(git rev-parse --show-toplevel):/paddle paddle:dev")
就可以按 `Ctrl-C` 和 `c` 键来启动编译了。
- 可以并行编译吗?
是的。我们的 Docker image 运行一个 [Bash 脚本](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/paddle/scripts/paddle_build.sh)。这个脚本调用`make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。
- Docker 需要 sudo?
如果用自己的电脑开发,自然也就有管理员权限(sudo)了。如果用公用的电脑开发,需要请管理员安装和配置好 Docker。此外,PaddlePaddle 项目在努力开始支持其他不需要 sudo 的集装箱技术,比如 rkt。
- 在 Windows/MacOS 上编译很慢?
Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考[issue627](https://github.com/PaddlePaddle/Paddle/issues/627)。
- 磁盘不够?
本文中的例子里, `docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。 `docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考 [这篇文章](https://zaiste.net/posts/removing_docker_containers) 来清理这些内容。
- 在DockerToolbox下使用book时`http://localhost:8888/`无法打开?
需要将localhost替换成虚拟机ip,一般需要在浏览器中输入:`http://192.168.99.100:8888/`
- pip install gpu版本的PaddlePaddle后运行出现SegmentFault如下:
@ 0x7f6c8d214436 paddle::platform::EnforceNotMet::EnforceNotMet()
@ 0x7f6c8dfed666 paddle::platform::GetCUDADeviceCount()
@ 0x7f6c8d2b93b6 paddle::framework::InitDevices()
出现这个问题原因主要是由于您的显卡驱动低于对应CUDA版本的要求,请保证您的显卡驱动支持所使用的CUDA版本
## 附录
### **编译依赖表**
依赖包名称
版本
说明
安装命令
CMake
3.4
GCC
4.8 / 5.4
推荐使用CentOS的devtools2
Python
2.7.x.
依赖libpython2.7.so
apt install python-dev
或 yum install python-devel
SWIG
最低 2.0
apt install swig
或 yum install swig
wget
any
apt install wget
或 yum install wget
openblas
any
pip
最低9.0.1
apt install python-pip
或 yum install Python-pip
numpy
>=1.12.0
pip install numpy==1.14.0
protobuf
3.1.0
pip install protobuf==3.1.0
wheel
any
pip install wheel
patchELF
any
apt install patchelf
或参见github patchELF 官方文档
go
>=1.8
可选
选项 | 说明 | 默认值 |
---|---|---|
WITH_GPU | 是否支持GPU | ON |
WITH_C_API | 是否仅编译CAPI | OFF |
WITH_DOUBLE | 是否使用双精度浮点数 | OFF |
WITH_DSO | 是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库 | ON |
WITH_AVX | 是否编译含有AVX指令集的PaddlePaddle二进制文件 | ON |
WITH_PYTHON | 是否内嵌PYTHON解释器 | ON |
WITH_STYLE_CHECK | 是否编译时进行代码风格检查 | ON |
WITH_TESTING | 是否开启单元测试 | OFF |
WITH_DOC | 是否编译中英文文档 | OFF |
WITH_SWIG_PY | 是否编译PYTHON的SWIG接口,该接口可用于预测和定制化训练 | Auto |
WITH_GOLANG | 是否编译go语言的可容错parameter server | OFF |
WITH_MKL | 是否使用MKL数学库,如果为否则是用OpenBLAS | ON |
版本号 | 版本说明 |
---|---|
paddlepaddle-gpu==0.15.0 | 使用CUDA 9.0和cuDNN 7编译的0.15.0版本 |
paddlepaddle-gpu==0.15.0.post87 | 使用CUDA 8.0和cuDNN 7编译的0.15.0版本 |
paddlepaddle-gpu==0.15.0.post85 | 使用CUDA 8.0和cuDNN 5编译的0.15.0版本 |
paddlepaddle-gpu==0.13.0 | 使用CUDA 9.0和cuDNN 7编译的0.13.0版本 |
paddlepaddle-gpu==0.12.0 | 使用CUDA 8.0和cuDNN 5编译的0.12.0版本 |
paddlepaddle-gpu==0.11.0.post87 | 使用CUDA 8.0和cuDNN 7编译的0.11.0版本 |
paddlepaddle-gpu==0.11.0.post85 | 使用CUDA 8.0和cuDNN 5编译的0.11.0版本 |
paddlepaddle-gpu==0.11.0 | 使用CUDA 7.5和cuDNN 5编译的0.11.0版本 |
版本号 | 版本说明 |
---|---|
hub.baidubce.com/paddlepaddle/paddle:latest | 最新的预先安装好PaddlePaddle CPU版本的镜像 |
hub.baidubce.com/paddlepaddle/paddle:latest-dev | 最新的PaddlePaddle的开发环境 |
hub.baidubce.com/paddlepaddle/paddle:[Version] | 将version换成具体的版本,历史版本的预安装好PaddlePaddle的镜像 |
hub.baidubce.com/paddlepaddle/paddle:latest-gpu | 最新的预先安装好PaddlePaddle GPU版本的镜像 |
版本说明 | cp27-cp27mu | cp27-cp27m |
---|---|---|
cpu_avx_mkl | paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl | paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl |
cpu_avx_mkl | paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl | paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl |
cpu_noavx_openblas | paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl | paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl |
cuda8.0_cudnn5_avx_mkl | paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl | paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl |
cuda8.0_cudnn7_avx_mkl | paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl | paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl |