# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.framework import core from paddle.fluid import unique_name from .pass_base import PassBase, register_pass from paddle.distributed.fleet.meta_optimizers.common import OpRole from paddle.fluid.data_feeder import check_variable_and_dtype, check_type from paddle.distributed.auto_parallel.utils import ( get_loss_op, set_var_dist_attr, ) from paddle.distributed.auto_parallel.utils import ( naive_set_dist_op_attr_for_program_by_mesh_and_mapping, ) from paddle.distributed.auto_parallel.process_group import ( get_world_process_group, ) from paddle.fluid.contrib.mixed_precision.fp16_utils import ( AutoMixedPrecisionLists, ) from paddle.fluid.contrib.mixed_precision.fp16_utils import ( _keep_fp32_input, _keep_fp32_output, find_op_index, ) from paddle.fluid.contrib.mixed_precision.fp16_utils import ( _valid_types, find_true_post_op, find_true_prev_op, ) from paddle.fluid.contrib.mixed_precision.fp16_utils import ( _is_in_black_varnames, _dtype_to_str, _rename_arg, ) from paddle.distributed.auto_parallel.dist_attribute import ( OperatorDistributedAttribute, ) from ..auto_parallel.utils import is_forward_op, is_backward_op, is_loss_op world_process_group = get_world_process_group() class AMPState(object): def __init__(self, block): self._block = block self._op_fp16_dict = ( {} ) # op_id --> True/False. 'True' means that the current op is in fp16 mode. self._var_name_dict = {} # fwd_op_id --> {old_name: cast_name} self.is_train = False def _is_fp16_op(self, op_id): return self._op_fp16_dict.get(op_id, None) def _build_state(self, amp_lists, dist_context): ops = self._block.ops dist_op_context = dist_context.dist_op_context for op in ops: if int(op.attr('op_role')) == 257: self.is_train = True if int(op.attr('op_role')) == int(OpRole.Forward): self._mark_black_white_ops(amp_lists) elif int(op.attr('op_role')) == int(OpRole.Backward): if op.desc.original_id() in dist_op_context.grad_op_id_to_op_id: fwd_op_id = dist_op_context.grad_op_id_to_op_id[ op.desc.original_id() ] if self._is_fp16_op(fwd_op_id) == True: self._op_fp16_dict[op.desc.original_id()] = True elif self._is_fp16_op(fwd_op_id) == False: self._op_fp16_dict[op.desc.original_id()] = False elif int(op.attr('op_role')) == int(OpRole.Optimize): break return self.is_train def _mark_black_white_ops(self, amp_lists): """ this function is modified from paddle.fluid.contrib.mixed_precision """ self._block._sync_with_cpp() ops = self._block.ops for op in ops: if int(op.attr('op_role')) == int(OpRole.Backward): break if op.type == 'create_py_reader' or op.type == 'read': continue if amp_lists.black_varnames is not None and _is_in_black_varnames( op, amp_lists ): self._op_fp16_dict[op.desc.original_id()] = False continue if op.type in amp_lists.black_list: self._op_fp16_dict[op.desc.original_id()] = False elif op.type in amp_lists.white_list: self._op_fp16_dict[op.desc.original_id()] = True elif op.type in amp_lists.gray_list: is_black_op = False is_white_op = False for in_name in op.input_names: # if this op has inputs if in_name: for in_var_name in op.input(in_name): in_var = self._block.var(in_var_name) # this in_var isn't the output of other op if in_var.op is None: continue elif in_var.op is op: prev_op = find_true_prev_op( ops, op, in_var_name ) if prev_op is None: continue else: prev_op = in_var.op # if it's one of inputs if ( self._is_fp16_op(prev_op.desc.original_id()) == False or prev_op.type in amp_lists.black_list ): is_black_op = True elif ( self._is_fp16_op(prev_op.desc.original_id()) == True or prev_op.type in amp_lists.white_list ): is_white_op = True if is_black_op: self._op_fp16_dict[op.desc.original_id()] = False elif is_white_op: self._op_fp16_dict[op.desc.original_id()] = True else: pass else: # For numerical safe, we apply fp32 computation on ops that # are not determined which list they should stay. self._op_fp16_dict[op.desc.original_id()] = False def cast_forward_program(self, dist_context): ops = self._block.ops idx = 0 while idx < len(ops): op = ops[idx] num_cast_ops = 0 if int(op.attr('op_role')) == int(OpRole.Backward): break if self._is_fp16_op(op.desc.original_id()) == False: num_cast_ops = self._insert_cast_op_forward( op, idx, core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32, dist_context, ) elif self._is_fp16_op(op.desc.original_id()) == True: num_cast_ops = self._insert_cast_op_forward( op, idx, core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP16, dist_context, ) else: pass idx += num_cast_ops + 1 self._block._sync_with_cpp() def _insert_cast_op_forward( self, op, idx, src_dtype, dst_dtype, dist_context ): """ only for forward cast modified from paddle.fluid.contrib.mixed_precision """ num_cast_ops = 0 var_name_dict = {} for in_name in op.input_names: if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input( op, in_name ): continue for in_var_name in op.input(in_name): in_var = self._block._find_var_recursive(in_var_name) if in_var.type not in _valid_types or in_var.dtype == dst_dtype: continue if in_var.dtype == src_dtype: cast_name = ( in_var.name + '.cast_' + _dtype_to_str(dst_dtype) ) out_var = self._block.vars.get(cast_name) var_name_dict[in_var.name] = cast_name consume_op_attr = dist_context.get_op_dist_attr_for_program( op ) assert consume_op_attr is not None if out_var is None or out_var.dtype != dst_dtype: # NOTE we make the cast op and var's dist attr as the op that consume the # cast var instead of the op which generates the var in_var_dist_attr = consume_op_attr.get_input_dist_attr( in_var.name ) assert in_var_dist_attr is not None ref_mesh = in_var_dist_attr.process_mesh ref_mapping = in_var_dist_attr.dims_mapping consume_op_attr.set_input_dist_attr( cast_name, in_var_dist_attr ) out_var = self._block.create_var( name=cast_name, dtype=dst_dtype, persistable=False, stop_gradient=in_var.stop_gradient, ) set_var_dist_attr( dist_context, out_var, ref_mapping, ref_mesh ) cast_op = self._block._insert_op_without_sync( idx, type="cast", inputs={"X": in_var}, outputs={"Out": out_var}, attrs={ "in_dtype": in_var.dtype, "out_dtype": out_var.dtype, }, ) naive_set_dist_op_attr_for_program_by_mesh_and_mapping( cast_op, ref_mesh, ref_mapping, dist_context ) num_cast_ops += 1 else: in_var_dist_attr = consume_op_attr.get_input_dist_attr( in_var.name ) consume_op_attr.set_input_dist_attr( cast_name, in_var_dist_attr ) _rename_arg(op, in_var.name, cast_name) else: if op.has_attr('in_dtype'): op._set_attr('in_dtype', dst_dtype) self._var_name_dict[op.desc.original_id()] = var_name_dict if ( src_dtype == core.VarDesc.VarType.FP32 and dst_dtype == core.VarDesc.VarType.FP16 ): for out_name in op.output_names: if _keep_fp32_output(op, out_name): continue for out_var_name in op.output(out_name): out_var = self._block.var(out_var_name) if out_var.type not in _valid_types: continue if out_var.dtype == core.VarDesc.VarType.FP32: out_var.desc.set_dtype(core.VarDesc.VarType.FP16) if op.has_attr('out_dtype'): op._set_attr('out_dtype', core.VarDesc.VarType.FP16) return num_cast_ops def cast_backward_program(self, params_grads, dist_context): self._block._sync_with_cpp() ops = self._block.ops loss_op = get_loss_op(self._block) loss_op_index = find_op_index(self._block.desc, loss_op.desc) appended_grad_times = 0 idx = loss_op_index + 1 while idx < len(ops): num_cast_ops = 0 grad_op = ops[idx] # NOTE: the map in `grad_var_to_var` may be changed when the var is casted, # which will affect the dist_op to insert allreduce_sum op. op_dist_attr = dist_context.get_op_dist_attr_for_program(grad_op) if is_backward_op(grad_op) and ( is_forward_op(ops[idx - 1]) or is_loss_op(ops[idx - 1]) ): if not op_dist_attr.is_recompute: appended_grad_times += 1 grad_op_orig_id = grad_op.desc.original_id() dist_op_context = dist_context.dist_op_context if grad_op_orig_id in dist_op_context.grad_op_id_to_op_id: if self._is_fp16_op(grad_op_orig_id) == False: # fp32 num_cast_ops = self._insert_cast_op_backward( grad_op, idx, core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32, dist_context, appended_grad_times, ) elif self._is_fp16_op(grad_op_orig_id) == True: # fp16 num_cast_ops = self._insert_cast_op_backward( grad_op, idx, core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP16, dist_context, appended_grad_times, ) elif grad_op.type == "sum": in_var_name = grad_op.desc.input_arg_names()[0] src_dtype = self._block.var(in_var_name).dtype for in_var_name in grad_op.desc.input_arg_names(): assert src_dtype == self._block.var(in_var_name).dtype out_var_name = grad_op.desc.output_arg_names()[0] out_var = self._block.var(out_var_name) if out_var.dtype != src_dtype: out_var.desc.set_dtype(src_dtype) elif int(grad_op.attr('op_role')) == 257: pass else: raise ValueError( "'{}' op is not supported in the complete amp pass.".format( grad_op.type ) ) idx += num_cast_ops + 1 self._block._sync_with_cpp() _update_backward_cast_ops(params_grads, dist_context) def _insert_cast_op_backward( self, grad_op, idx, src_dtype, dst_dtype, dist_context, appended_grad_times, ): """only for backward cast""" def _keep_fp32_input(op, in_name): op_type = op.type if op_type in ['layer_norm_grad']: return in_name not in {'X', 'Y@GRAD'} return False def _keep_fp32_output(op, out_name): op_type = op.type if op_type in ['layer_norm_grad']: return out_name != 'X@GRAD' return False num_cast_ops = 0 original_id = grad_op.desc.original_id() dist_op_context = dist_context.dist_op_context fwd_op_id = dist_op_context.grad_op_id_to_op_id[original_id] for in_name in grad_op.input_names: if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input( grad_op, in_name ): for in_var_name in grad_op.input(in_name): in_var = self._block._find_var_recursive(in_var_name) assert in_var.dtype == core.VarDesc.VarType.FP32 continue for in_var_name in grad_op.input(in_name): in_var = self._block._find_var_recursive(in_var_name) if in_var.dtype == src_dtype: consume_op_attr = dist_context.get_op_dist_attr_for_program( grad_op ) if in_var_name in self._var_name_dict[fwd_op_id]: # NOTE: if in_var of consume grad_op has been casted before, # it should be renamed and reset dist_attr. cast_name = self._var_name_dict[fwd_op_id][in_var_name] grad_op.desc._rename_input(in_var_name, cast_name) in_var_dist_attr = consume_op_attr.get_input_dist_attr( in_var_name ) consume_op_attr.set_input_dist_attr( cast_name, in_var_dist_attr ) else: assert ( in_var.dtype == dst_dtype ), "op [{}] expect input [{}] to be dtype [{}] BUT got [{}]. {}".format( grad_op.type, in_name, dst_dtype, in_var.dtype, str(grad_op), ) for out_name in grad_op.output_names: if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_output( grad_op, out_name ): for out_var_name in grad_op.output(out_name): out_var = self._block._find_var_recursive(out_var_name) assert out_var.dtype == core.VarDesc.VarType.FP32 continue for out_var_name in grad_op.output(out_name): out_var = self._block._find_var_recursive(out_var_name) out_var_name_prefix = out_var_name[: out_var_name.find("@")] fwd_var = self._block._find_var_recursive(out_var_name_prefix) # NOTE: the out_var's dtype of consume grad_op should equal to the fwd_var's dtype if out_var.dtype != fwd_var.dtype: out_var.desc.set_dtype(fwd_var.dtype) if out_var.dtype == src_dtype: if out_var_name_prefix in self._var_name_dict[fwd_op_id]: # NOTE: if out_var of consume grad_op has been casted before, # it should be renamed and reset dist_attr, then we insert cast op to # convert the cast_var to original dtype consume_op_attr = ( dist_context.get_op_dist_attr_for_program(grad_op) ) fwd_cast_name = self._var_name_dict[fwd_op_id][ out_var_name_prefix ] suffix = "" if "@RENAME" in out_var_name: suffix = out_var_name[ out_var_name.find("@RENAME") : ] cast_name = fwd_cast_name + "@GRAD" + suffix cast_var = self._block.vars.get(cast_name) if cast_var is None or cast_var.dtype != dst_dtype: grad_op.desc._rename_output(out_var_name, cast_name) out_var_dist_attr = ( consume_op_attr.get_output_dist_attr( out_var_name ) ) ref_mesh = out_var_dist_attr.process_mesh ref_mapping = out_var_dist_attr.dims_mapping consume_op_attr.set_output_dist_attr( cast_name, out_var_dist_attr ) assert ref_mapping is not None cast_var = self._block.create_var( name=cast_name, shape=out_var.shape, dtype=dst_dtype, persistable=False, stop_gradient=out_var.stop_gradient, ) set_var_dist_attr( dist_context, cast_var, ref_mapping, ref_mesh ) dist_op_context.grad_var_to_var[ appended_grad_times ][cast_name] = fwd_cast_name cast_op = self._block._insert_op( idx + 1, type="cast", inputs={"X": cast_var}, outputs={"Out": out_var}, attrs={ "in_dtype": cast_var.dtype, "out_dtype": out_var.dtype, "op_role": OpRole.Backward, }, ) cast_op._remove_attr("op_role_var") cast_op._remove_attr("op_namescope") cast_op._remove_attr("with_quant_attr") naive_set_dist_op_attr_for_program_by_mesh_and_mapping( cast_op, ref_mesh, ref_mapping, dist_context ) num_cast_ops += 1 else: assert out_var.dtype == dst_dtype return num_cast_ops def _update_backward_cast_ops(params_grads, dist_context): """ move param grad cast to the end of backward segment in order to enabel fp16 allreduce """ # TODO filter optimize ops in future main_block = paddle.static.default_main_program().global_block() main_block._sync_with_cpp() for p, g in params_grads: op = g.op if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast': if int(op.attr('op_role')) == int(OpRole.Backward) and op.has_attr( 'op_role_var' ): op._remove_attr("op_role_var") post_ops = find_true_post_op(main_block.ops, op, g.name) if post_ops: raise ValueError( "The cast op {0}'s output should not be" "used by a non-optimize op, however, it" "is used by {1}".format(op, post_ops[0]) ) if op == main_block.ops[-1]: continue # add new op in the python and cpp at the same time new_op_desc = main_block.desc.append_op() new_op_desc.copy_from(op.desc) new_op = paddle.fluid.framework.Operator( block=main_block, desc=new_op_desc, type=None, inputs=None, outputs=None, attrs=None, ) main_block.ops.append(new_op) # dist attr param_dist_attr = dist_context.get_tensor_dist_attr_for_program(p) output_dist_attr = dist_context.get_tensor_dist_attr_for_program( main_block.var(op.output_arg_names[0]) ) assert param_dist_attr is not None assert output_dist_attr is not None naive_set_dist_op_attr_for_program_by_mesh_and_mapping( new_op, param_dist_attr.process_mesh, param_dist_attr.dims_mapping, dist_context, ) output_dist_attr.process_mesh = param_dist_attr.process_mesh output_dist_attr.dims_mapping = param_dist_attr.dims_mapping op_idx = find_op_index(main_block.desc, op.desc) if op_idx == -1: raise ValueError("The op {0} is not in program".format(op)) main_block._remove_op(op_idx, sync=False) main_block._sync_with_cpp() def _check_and_update_gradient(params_grads, loss_scaling, dist_context): main_block = paddle.static.default_main_program().global_block() main_block._sync_with_cpp() grads = [g for _, g in params_grads] check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale') for e in grads: check_variable_and_dtype( e, "x", ['float16', 'float32', 'float64'], 'check_finite_and_unscale', ) found_inf = main_block.create_var( name=unique_name.generate_with_ignorable_key( ".".join(['find_infinite_scale', 'tmp']) ), shape=[1], dtype='bool', type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=False, ) set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks) inputs = {'X': grads, 'Scale': loss_scaling} outputs = {'Out': grads, 'FoundInfinite': found_inf} attrs = {'op_role': OpRole.Optimize} new_op = main_block.append_op( type='check_finite_and_unscale', inputs=inputs, outputs=outputs, attrs=attrs, ) new_op_dist_attr = OperatorDistributedAttribute() new_op_dist_attr.process_mesh = world_process_group.ranks new_op_dist_attr.impl_idx = 0 if len(world_process_group.ranks) > 1: new_op_dist_attr.impl_type = "check_finite_and_unscale" for g in grads: g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g) assert g_dist_attr is not None new_op_dist_attr.set_input_dims_mapping( g.name, g_dist_attr.dims_mapping ) new_op_dist_attr.set_output_dims_mapping( g.name, g_dist_attr.dims_mapping ) dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr) return grads, found_inf @register_pass("auto_parallel_amp") class AMPPass(PassBase): def __init__(self): super(AMPPass, self).__init__() self.set_attr("loss", None) self.set_attr("dist_context", None) self.set_attr("custom_white_list", None) self.set_attr("custom_black_list", None) self.set_attr("custom_black_varnames", None) self.set_attr("init_loss_scaling", 32768.0) self.set_attr("incr_every_n_steps", 1000) self.set_attr("decr_every_n_nan_or_inf", 2) self.set_attr("incr_ratio", 2.0) self.set_attr("decr_ratio", 0.8) self.set_attr("use_dynamic_loss_scaling", False) self.set_attr("input_data", []) self.set_attr("params_grads", []) self.set_attr("dtype", "") # fp16/bf16 self._loss = None self._loss_scaling = None self._num_good_steps = None self._num_bad_steps = None self._loss = None def _check_self(self): if self.get_attr("dtype") not in ["float16", "bfloat16"]: return False if self.get_attr("init_loss_scaling") < 0: return False if self.get_attr("incr_every_n_steps") < 0: return False if self.get_attr("decr_every_n_nan_or_inf") < 0: return False if self.get_attr("incr_ratio") < 0: return False if self.get_attr("decr_ratio") < 0: return False if self.get_attr("dist_context") is None: return False return True def _check_conflict(self, other_pass): return True # NOTE: why AMPBackwardPass can override apply_single_impl instead of # apply_impl? AMP is an optimization pass for serial program, # in distributed scenario, all ranks should have the same modification. def _apply_single_impl(self, main_program, startup_program, context): self.dist_context = self.get_attr("dist_context") params_grads = self.get_attr("params_grads") self.amp_dtype = self.get_attr("dtype") amp_lists = AutoMixedPrecisionLists( set(self.get_attr("custom_white_list")), set(self.get_attr("custom_black_list")), set(self.get_attr("custom_black_varnames")), ) with paddle.static.program_guard(main_program, startup_program): amp_state = AMPState(main_program.global_block()) is_train = amp_state._build_state(amp_lists, self.dist_context) amp_state.cast_forward_program(self.dist_context) if is_train: with paddle.static.program_guard(main_program, startup_program): amp_state.cast_backward_program(params_grads, self.dist_context) self._init_amp_var() self._scale_loss() if ( self.get_attr("use_dynamic_loss_scaling") or self.get_attr("init_loss_scaling") != 1.0 ): grads, found_inf = _check_and_update_gradient( params_grads, self._loss_scaling, self.dist_context ) if self.get_attr("use_dynamic_loss_scaling"): self._update_loss_scaling(grads, found_inf) def _init_amp_var(self): self._loss_scaling = paddle.static.create_global_var( name=unique_name.generate("loss_scaling"), shape=[1], value=self.get_attr("init_loss_scaling"), dtype='float32', persistable=True, ) set_var_dist_attr( self.dist_context, self._loss_scaling, [-1], world_process_group.ranks, ) if self.get_attr("use_dynamic_loss_scaling"): self._num_good_steps = paddle.static.create_global_var( name=unique_name.generate("num_good_steps"), shape=[1], value=0, dtype='int32', persistable=True, ) set_var_dist_attr( self.dist_context, self._num_good_steps, [-1], world_process_group.ranks, ) self._num_bad_steps = paddle.static.create_global_var( name=unique_name.generate("num_bad_steps"), shape=[1], value=0, dtype='int32', persistable=True, ) set_var_dist_attr( self.dist_context, self._num_bad_steps, [-1], world_process_group.ranks, ) def _scale_loss(self): main_block = paddle.static.default_main_program().global_block() main_block._sync_with_cpp() OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName() loss = self.get_attr("loss") assert loss is not None loss_op = loss.op loss_op_dist_attr = self.dist_context.get_op_dist_attr_for_program( loss_op ) if loss.dtype != core.VarDesc.VarType.FP32: # cast loss here will change the effective loss tensor for the computation graph # and therefore will effect all following passes whose logic is based on the loss tensor(Recompute & Gradient Merge), # so we it is not allowed by now. fixed it in future. raise NotImplementedError( "Loss's generator op is not support in FP16 in Auto Parallel by now, please put that op into your black-list." ) tmp_name = unique_name.generate(loss.name + ".cast_fp32") cast_loss = main_block.create_var(name=tmp_name, dtype=dtype) loss_dist_attr = self.dist_context.get_tensor_dist_attr_for_program( loss ) ref_mesh = loss_op_dist_attr.process_mesh self.dist_context.set_tensor_dist_attr_for_program( cast_loss, loss_dist_attr ) loss_op_idx = find_op_index(main_block.desc, loss_op.desc) cast_op = main_block._insert_op( loss_op_idx + 1, type='cast', inputs={'X': [loss]}, outputs={'Out': [cast_loss]}, attrs={ "in_dtype": loss.dtype, "out_dtype": core.VarDesc.VarType.FP32, 'op_role': loss_op.all_attrs()[OP_ROLE_KEY], }, ) loss_op._set_attr( OP_ROLE_KEY, core.op_proto_and_checker_maker.OpRole.Forward ) naive_set_dist_op_attr_for_program_by_mesh_and_mapping( cast_op, ref_mesh, [-1], self.dist_context ) loss = loss.astype('float32') if self.amp_dtype == "float16" and ( self.get_attr("use_dynamic_loss_scaling") or self.get_attr("init_loss_scaling") != 1.0 ): loss_op_idx = find_op_index(main_block.desc, loss_op.desc) # forward ref_mesh = loss_op_dist_attr.process_mesh self._scaled_loss = main_block.create_var( name=unique_name.generate("scaled_loss"), shape=loss.shape, dtype=loss.dtype, persistable=loss.persistable, ) set_var_dist_attr( self.dist_context, self._scaled_loss, [-1], ref_mesh ) elementwise_mul_op = main_block._insert_op( loss_op_idx + 1, type='elementwise_mul', inputs={'X': [loss], 'Y': [self._loss_scaling]}, outputs={'Out': [self._scaled_loss]}, attrs={ 'op_role': loss_op.all_attrs()[OP_ROLE_KEY], }, ) loss_op._set_attr( OP_ROLE_KEY, core.op_proto_and_checker_maker.OpRole.Forward ) naive_set_dist_op_attr_for_program_by_mesh_and_mapping( elementwise_mul_op, ref_mesh, [-1], self.dist_context ) # backward first_backward_op = main_block.ops[loss_op_idx + 2] assert ( first_backward_op.type == "fill_constant" and int(first_backward_op.all_attrs()[OP_ROLE_KEY]) == 257 ) self._scaled_loss_grad = main_block.create_var( name=unique_name.generate("scaled_loss") + "@GRAD", shape=loss.shape, dtype=loss.dtype, persistable=loss.persistable, ) set_var_dist_attr( self.dist_context, self._scaled_loss_grad, [-1], ref_mesh ) pre_grad_name = first_backward_op.output_arg_names[0] first_backward_op._rename_output( pre_grad_name, self._scaled_loss_grad.name ) # FIXME(JZ-LIANG) a trick to insert backward op main_block._sync_with_cpp() elementwise_mul_grad_op_desc = main_block.desc._insert_op( loss_op_idx + 3 ) elementwise_mul_grad_op_desc.set_type("elementwise_mul_grad") elementwise_mul_grad_op_desc.set_input( 'Out@GRAD', [self._scaled_loss_grad.name] ) elementwise_mul_grad_op_desc.set_input('X', [loss.name]) elementwise_mul_grad_op_desc.set_input( 'Y', [self._loss_scaling.name] ) elementwise_mul_grad_op_desc.set_output('X@GRAD', [pre_grad_name]) elementwise_mul_grad_op_desc.set_output('Y@GRAD', []) elementwise_mul_grad_op_desc._set_attr( OP_ROLE_KEY, core.op_proto_and_checker_maker.OpRole.Backward ) elementwise_mul_grad_op_desc._set_attr('axis', -1) elementwise_mul_grad_op = paddle.fluid.framework.Operator( main_block, elementwise_mul_grad_op_desc ) main_block.ops.insert(loss_op_idx + 3, elementwise_mul_grad_op) main_block._sync_with_cpp() elementwise_mul_grad_op = main_block.ops[loss_op_idx + 3] assert elementwise_mul_grad_op.type == "elementwise_mul_grad" naive_set_dist_op_attr_for_program_by_mesh_and_mapping( elementwise_mul_grad_op, ref_mesh, [-1], self.dist_context ) else: self._scaled_loss = loss main_block._sync_with_cpp() def _update_loss_scaling(self, grads, found_inf): main_block = paddle.static.default_main_program().global_block() main_block._sync_with_cpp() check_variable_and_dtype( self._loss_scaling, "prev_loss_scaling", ['float32', 'float64'], "update_loss_scaling", ) check_type(grads, 'x', (tuple, list), 'update_loss_scaling') for e in grads: check_variable_and_dtype( e, "x", ['float16', 'float32', 'float64'], 'update_loss_scaling' ) if e.dtype == core.VarDesc.VarType.FP16: assert ( self._loss_scaling.dtype == core.VarDesc.VarType.FP32 ), "The dtype of prev_loss_scaling should be float32 when the dtype of x is float16." else: assert ( self._loss_scaling.dtype == e.dtype ), "The dtype of prev_loss_scaling should be equal to the dtype of x." inputs = { 'X': grads, 'FoundInfinite': found_inf, 'PrevLossScaling': self._loss_scaling, 'InGoodSteps': self._num_good_steps, 'InBadSteps': self._num_bad_steps, } outputs = { 'Out': grads, 'LossScaling': self._loss_scaling, 'OutGoodSteps': self._num_good_steps, 'OutBadSteps': self._num_bad_steps, } attrs = { 'incr_every_n_steps': self.get_attr("incr_every_n_steps"), 'decr_every_n_nan_or_inf': self.get_attr("decr_every_n_nan_or_inf"), 'incr_ratio': self.get_attr("incr_ratio"), 'decr_ratio': self.get_attr("decr_ratio"), 'stop_update': self.get_attr("stop_update"), 'op_role': OpRole.Optimize, } new_op = main_block.append_op( type='update_loss_scaling', inputs=inputs, outputs=outputs, attrs=attrs, ) new_op_dist_attr = OperatorDistributedAttribute() new_op_dist_attr.process_mesh = world_process_group.ranks new_op_dist_attr.impl_idx = 0 if len(world_process_group.ranks) > 1: new_op_dist_attr.impl_type = "update_loss_scaling" for g in grads: g_dist_attr = self.dist_context.get_tensor_dist_attr_for_program(g) assert g_dist_attr is not None new_op_dist_attr.set_input_dims_mapping( g.name, g_dist_attr.dims_mapping ) new_op_dist_attr.set_output_dims_mapping( g.name, g_dist_attr.dims_mapping ) self.dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr) main_block._sync_with_cpp() def get_loss(self): # the amp might change the effective loss variable for network and # therefore would affect the subsequent passes that rely on the loss. # return the effective loss after amp pass. if self._loss: return self._loss else: return self.get_attr("loss")