# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.base.variable_index import _getitem_static class TestGetitemInDygraph(unittest.TestCase): def setUp(self): paddle.disable_static() def test_combined_index_1(self): # int tensor + slice (without decreasing axes) np_data = np.random.randn(3, 4, 5, 6) np_res = np_data[[0, 1], :, [1, 2]] x = paddle.to_tensor(np_data) y = x[[0, 1], :, [1, 2]] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_2(self): # int tensor + slice (with decreasing axes) np_data = np.random.randn(3, 4, 5, 6) x = paddle.to_tensor(np_data) np_res = np_data[:, 1, [1, 2], 0] y = x[:, 1, [1, 2], 0] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_3(self): # multiple int tensors, with one int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[[1, 0], :, [1, 4], 1:5:2, 4] x = paddle.to_tensor(np_data) y = x[[1, 0], :, [1, 4], 1:5:2, 4] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_4(self): # multiple not adjacent int tensors, with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[:, [1, 0], 0:4:2, [2, 3], 4] x = paddle.to_tensor(np_data) y = x[:, [1, 0], 0:4:2, [2, 3], 4] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_5(self): # multiple adjacent int tensors, with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[::2, [1, 0], [2, 3], 0:4:2] x = paddle.to_tensor(np_data) y = x[::2, [1, 0], [2, 3], 0:4:2] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_6(self): # multiple adjacent and not adjacent int tensors, with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[::2, [1, 0], [2, 3], 0:4:2, [4, 6]] x = paddle.to_tensor(np_data) y = x[::2, [1, 0], [2, 3], 0:4:2, [4, 6]] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_7(self): # multiple adjacent and not adjacent int tensors (rank > 1d), with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[::2, [[1, 0]], [[2, 3]], 0:4:2, [[4, 6]]] x = paddle.to_tensor(np_data) y = x[::2, [[1, 0]], [[2, 3]], 0:4:2, [[4, 6]]] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_8(self): # multiple adjacent and not adjacent int tensors (rank > 1d), with int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[ [[1, 0], [0, 1]], [[2, 3], [1, 0]], 0:4:2, [[3, 5], [4, 2]] ] x = paddle.to_tensor(np_data) y = x[[[1, 0], [0, 1]], [[2, 3], [1, 0]], 0:4:2, [[3, 5], [4, 2]]] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_9(self): # multiple int tensors, with broadcast. np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[[[1, 0]], [1, 0], 0:4:2, [[3, 5], [4, 2]]] x = paddle.to_tensor(np_data) y = x[[[1, 0]], [1, 0], 0:4:2, [[3, 5], [4, 2]]] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_10(self): # only one bool tensor with basic-index np_data = np.random.randn(3, 4, 5, 6) np_res = np_data[:, [True, False, True, False], 4] x = paddle.to_tensor(np_data) y = x[:, [True, False, True, False], 4] np.testing.assert_allclose(y.numpy(), np_res) def test_combined_index_11(self): # only one bool tensor with all False np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[:, [False, False, False, False], 4] x = paddle.to_tensor(np_data) y = x[:, [False, False, False, False], 4] np.testing.assert_allclose(y.numpy(), np_res) def test_index_has_range(self): np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[:, range(3), 4] x = paddle.to_tensor(np_data) y = x[:, range(3), 4] np.testing.assert_allclose(y.numpy(), np_res) def test_indexing_with_bool_list1(self): # test bool-list indexing when axes num less than x.rank np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[[True, False, True], [False, False, False, True]] x = paddle.to_tensor(np_data) y = x[[True, False, True], [False, False, False, True]] np.testing.assert_allclose(y.numpy(), np_res) def test_indexing_with_bool_list2(self): # test bool-list indexing when axes num less than x.rank np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[ [True, False, True], [False, False, True, False], [True, False, False, True, False], ] x = paddle.to_tensor(np_data) y = x[ [True, False, True], [False, False, True, False], [True, False, False, True, False], ] np.testing.assert_allclose(y.numpy(), np_res) def test_indexing_is_multi_dim_list(self): # indexing is multi-dim int list, should be treat as one index, like numpy>=1.23 np_data = np.arange(3 * 4 * 5 * 6).reshape((6, 5, 4, 3)) np_res = np_data[np.array([[2, 3, 4], [1, 2, 5]])] x = paddle.to_tensor(np_data) y = x[[[2, 3, 4], [1, 2, 5]]] y_index_tensor = x[paddle.to_tensor([[2, 3, 4], [1, 2, 5]])] np.testing.assert_allclose(y.numpy(), np_res) np.testing.assert_allclose(y.numpy(), y_index_tensor.numpy()) class TestGetitemInStatic(unittest.TestCase): def setUp(self): paddle.enable_static() self.exe = paddle.static.Executor() def test_combined_index_1(self): # int tensor + slice (without decreasing axes) np_data = np.random.randn(3, 4, 5, 6) np_res = np_data[[0, 1], :, [1, 2]] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static(x, ([0, 1], slice(None, None, None), [1, 2])) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_2(self): # int tensor + slice (with decreasing axes) np_data = np.random.randn(3, 4, 5, 6) np_res = np_data[:, 1, [1, 2], 0] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static(x, (slice(None, None, None), 1, [1, 2], 0)) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_3(self): # multiple int tensors, with one int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[[1, 0], :, [1, 4], 1:5:2, 4] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, ([1, 0], slice(None, None, None), [1, 4], slice(1, 5, 2), 4) ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_4(self): # multiple not adjacent int tensors, with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[:, [1, 0], 0:4:2, [2, 3], 4] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, (slice(None, None, None), [1, 0], slice(0, 4, 2), [2, 3], 4) ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_5(self): # multiple adjacent int tensors, with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[::2, [1, 0], [2, 3], 0:4:2] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, (slice(None, None, 2), [1, 0], [2, 3], slice(0, 4, 2)) ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_6(self): # multiple adjacent and not adjacent int tensors, with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[::2, [1, 0], [2, 3], 0:4:2, [4, 6]] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, (slice(None, None, 2), [1, 0], [2, 3], slice(0, 4, 2), [4, 6]), ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_7(self): # multiple adjacent and not adjacent int tensors (rank > 1d), with no int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[::2, [[1, 0]], [[2, 3]], 0:4:2, [[4, 6]]] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, ( slice(None, None, 2), [[1, 0]], [[2, 3]], slice(0, 4, 2), [[4, 6]], ), ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_8(self): # multiple adjacent and not adjacent int tensors (rank > 1d), with int tensor at first axis np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[ [[1, 0], [0, 1]], [[2, 3], [1, 0]], 0:4:2, [[3, 5], [4, 2]] ] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, ( [[1, 0], [0, 1]], [[2, 3], [1, 0]], slice(0, 4, 2), [[3, 5], [4, 2]], ), ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_9(self): # multiple int tensors, with broadcast. np_data = np.random.randn(3, 4, 5, 6, 7) np_res = np_data[[[1, 0]], [1, 0], 0:4:2, [[3, 5], [4, 2]]] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, ([[1, 0]], [1, 0], slice(0, 4, 2), [[3, 5], [4, 2]]) ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_10(self): # only one bool tensor with basic-index np_data = np.random.randn(3, 4, 5, 6) np_res = np_data[:, [True, False, True, False], 4] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, (slice(None, None, None), [True, False, True, False], 4) ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_combined_index_11(self): # only one bool tensor with all False np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[:, [False, False, False, False], 4] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, (slice(None, None, None), [False, False, False, False], 4) ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_index_has_range(self): # only one bool tensor with all False np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[:, range(3), 4] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static(x, (slice(None, None, None), range(3), 4)) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_indexing_with_bool_list1(self): # test bool-list indexing when axes num less than x.rank np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[[True, False, True], [False, False, False, True]] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, ([True, False, True], [False, False, False, True]) ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_indexing_with_bool_list2(self): # test bool-list indexing when axes num less than x.rank np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6)) np_res = np_data[ [True, False, True], [False, False, True, False], [True, False, False, True, False], ] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static( x, ( [True, False, True], [False, False, True, False], [True, False, False, True, False], ), ) res = self.exe.run(fetch_list=[y.name]) np.testing.assert_allclose(res[0], np_res) def test_indexing_is_multi_dim_list(self): # indexing is multi-dim int list, should be treat as one index, like numpy>=1.23 np_data = np.arange(3 * 4 * 5 * 6).reshape((6, 5, 4, 3)) np_res = np_data[np.array([[2, 3, 4], [1, 2, 5]])] with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x = paddle.to_tensor(np_data) y = _getitem_static(x, ([[2, 3, 4], [1, 2, 5]])) y_index_tensor = _getitem_static( x, paddle.to_tensor([[2, 3, 4], [1, 2, 5]]) ) res = self.exe.run(fetch_list=[y.name, y_index_tensor.name]) np.testing.assert_allclose(res[0], np_res) np.testing.assert_allclose(res[1], np_res) class TestGetItemErrorCase(unittest.TestCase): def setUp(self): paddle.disable_static() def test_bool_shape_error1(self): x = paddle.randn((4, 3, 2)) with self.assertRaises(IndexError): y = _getitem_static(x, ([True, False])) def test_bool_shape_error2(self): x = paddle.randn((4, 3, 2)) with self.assertRaises(IndexError): y = _getitem_static(x, (1, paddle.to_tensor([True, False]), [0, 1]))