// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/api/analysis_predictor.h" #include #include #include // NOLINT #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/tests/api/tester_helper.h" #include "paddle/fluid/platform/cpu_info.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/inference/api/mkldnn_quantizer.h" #endif DEFINE_string(dirname, "", "dirname to tests."); namespace paddle { TEST(AnalysisPredictor, analysis_off) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(false); auto _predictor = CreatePaddlePredictor(config); auto* predictor = static_cast(_predictor.get()); // Without analysis, the scope_ and sub_scope_ are created by predictor // itself. ASSERT_TRUE(predictor->scope_); ASSERT_TRUE(predictor->sub_scope_); ASSERT_EQ(predictor->scope_->parent(), nullptr); ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get()); // ir is turned off, so program shouldn't be optimized. LOG(INFO) << "scope parameters " << predictor->scope_->LocalVarNames().size(); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; ASSERT_TRUE(predictor->Run(inputs, &outputs)); } TEST(AnalysisPredictor, analysis_on) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(true); #ifdef PADDLE_WITH_CUDA config.EnableUseGpu(100, 0); #else config.DisableGpu(); #endif auto _predictor = CreatePaddlePredictor(config); auto* predictor = static_cast(_predictor.get()); ASSERT_TRUE(predictor->scope_); ASSERT_TRUE(predictor->sub_scope_); ASSERT_EQ(predictor->scope_->parent(), nullptr); ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get()); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; ASSERT_TRUE(predictor->Run(inputs, &outputs)); for (auto& output : outputs) { LOG(INFO) << inference::DescribeTensor(output); } // compare with NativePredictor auto naive_predictor = CreatePaddlePredictor(config.ToNativeConfig()); std::vector naive_outputs; ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs)); ASSERT_EQ(naive_outputs.size(), 1UL); inference::CompareTensor(outputs.front(), naive_outputs.front()); } TEST(AnalysisPredictor, ZeroCopy) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchUseFeedFetchOps(false); auto predictor = CreatePaddlePredictor(config); auto w0 = predictor->GetInputTensor("firstw"); auto w1 = predictor->GetInputTensor("secondw"); auto w2 = predictor->GetInputTensor("thirdw"); auto w3 = predictor->GetInputTensor("forthw"); w0->Reshape({4, 1}); w1->Reshape({4, 1}); w2->Reshape({4, 1}); w3->Reshape({4, 1}); auto* w0_data = w0->mutable_data(PaddlePlace::kCPU); auto* w1_data = w1->mutable_data(PaddlePlace::kCPU); auto* w2_data = w2->mutable_data(PaddlePlace::kCPU); auto* w3_data = w3->mutable_data(PaddlePlace::kCPU); for (int i = 0; i < 4; i++) { w0_data[i] = i; w1_data[i] = i; w2_data[i] = i; w3_data[i] = i; } predictor->ZeroCopyRun(); auto out = predictor->GetOutputTensor("fc_1.tmp_2"); PaddlePlace place; int size = 0; auto* out_data = out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); LOG(INFO) << "output_data: " << out_data; predictor->TryShrinkMemory(); } TEST(AnalysisPredictor, Clone) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchUseFeedFetchOps(true); config.SwitchIrOptim(true); std::vector> predictors; predictors.emplace_back(CreatePaddlePredictor(config)); LOG(INFO) << "************** to clone ************************"; const int num_threads = 3; for (int i = 1; i < num_threads; i++) { predictors.emplace_back(predictors.front()->Clone()); } auto* root_scope = static_cast(predictors[0].get())->scope(); ASSERT_FALSE(root_scope->kids().empty()); LOG(INFO) << "***** scope ******\n" << framework::GenScopeTreeDebugInfo(root_scope); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; predictors[0]->Run(inputs, &outputs); LOG(INFO) << "Run with single thread"; for (int i = 0; i < num_threads; i++) { LOG(INFO) << "run predictor " << i; ASSERT_TRUE(predictors[i]->Run(inputs, &outputs)); } LOG(INFO) << "Run with multiple threads"; std::vector threads; for (int i = 0; i < num_threads; i++) { threads.emplace_back([&predictors, &inputs, i] { LOG(INFO) << "thread #" << i << " running"; std::vector outputs; auto predictor = predictors.front()->Clone(); for (int j = 0; j < 10; j++) { ASSERT_TRUE(predictor->Run(inputs, &outputs)); } }); } for (auto& t : threads) { t.join(); } } // This function is not released yet, will fail on some machine. // TODO(Superjomn) Turn on it latter. /* TEST(AnalysisPredictor, memory_optim) { AnalysisConfig config(FLAGS_dirname); config.DisableGpu(); config.EnableMemoryOptim(true); config.SwitchIrDebug(); auto native_predictor = CreatePaddlePredictor(config.ToNativeConfig()); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector output, output1; { // The first predictor help to cache the memory optimize strategy. auto predictor = CreatePaddlePredictor(config); LOG(INFO) << "serialized program: " << predictor->GetSerializedProgram(); ASSERT_FALSE(predictor->GetSerializedProgram().empty()); // Run several times to check the parameters are not reused by mistake. for (int i = 0; i < 5; i++) { ASSERT_TRUE(predictor->Run(inputs, &output)); } } { output.clear(); // The second predictor to perform memory optimization. config.EnableMemoryOptim(false); auto predictor = CreatePaddlePredictor(config); // Run with memory optimization ASSERT_TRUE(predictor->Run(inputs, &output)); } // Run native ASSERT_TRUE(native_predictor->Run(inputs, &output1)); LOG(INFO) << "the output " << inference::DescribeTensor(output.front()); LOG(INFO) << "the native output " << inference::DescribeTensor(output1.front()); inference::CompareResult(output, output1); } */ #ifdef PADDLE_WITH_MKLDNN class MkldnnQuantizerTest : public testing::Test { public: MkldnnQuantizerTest() { AnalysisConfig config(FLAGS_dirname); predictor = std::move(CreatePaddlePredictor(config)); auto* predictor_p = static_cast(predictor.get()); auto qconfig = new MkldnnQuantizerConfig(); mkldnn_quantizer.reset( new AnalysisPredictor::MkldnnQuantizer(*predictor_p, qconfig)); } std::pair, float> Histogram( const framework::LoDTensor& var_tensor, float min_val, float max_val, int num_bins) const { return mkldnn_quantizer->Histogram(var_tensor, min_val, max_val, num_bins); } std::pair GetMaxScalingFactor( const framework::LoDTensor& var_tensor, bool is_unsigned) const { return mkldnn_quantizer->GetMaxScalingFactor(var_tensor, is_unsigned); } std::pair GetMaxChScalingFactor( const framework::LoDTensor& var_tensor, bool is_unsigned) const { return mkldnn_quantizer->GetMaxChScalingFactor(var_tensor, is_unsigned, 0); } std::pair GetKLScalingFactor( const framework::LoDTensor& var_tensor, bool is_unsigned) const { return mkldnn_quantizer->GetKLScalingFactor(var_tensor, is_unsigned); } protected: std::unique_ptr predictor; std::unique_ptr mkldnn_quantizer; float abs_error = 1e-6; static const std::array non_negative_values; static const std::array positive_and_negative_values; }; const std::array MkldnnQuantizerTest::non_negative_values = { 0.0158671, 0.026459, 0.0280772, 0.00962479, 0.0131628, 0.016704, 0.00118407, 0.00765726, 0.0123213, 0.00944741}; const std::array MkldnnQuantizerTest::positive_and_negative_values = {-0.0482659, -0.0102493, -0.00794221, -0.00387115, -0.00674586, -0.0495346, 0.0629528, -0.00531285, -0.0230353, 0.0269089}; TEST_F(MkldnnQuantizerTest, histogram_inverted_min_max) { const auto& values = non_negative_values; auto min_val = *std::min_element(values.begin(), values.end()); auto max_val = *std::max_element(values.begin(), values.end()); framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); ASSERT_THROW(Histogram(var_tensor, max_val, min_val, 3), platform::EnforceNotMet); } TEST_F(MkldnnQuantizerTest, histogram_non_negative_to_3) { // all non-negative values const auto& values = non_negative_values; auto min_val = *std::min_element(values.begin(), values.end()); auto max_val = *std::max_element(values.begin(), values.end()); framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); std::vector histogram; float bin_width; std::tie(histogram, bin_width) = Histogram(var_tensor, min_val, max_val, 3); ASSERT_NEAR(bin_width, std::abs(max_val - min_val) / 3.f, abs_error) << "Improperly calculated bin_width."; ASSERT_EQ(histogram[0], 4); ASSERT_EQ(histogram[1], 4); ASSERT_EQ(histogram[2], 2); } TEST_F(MkldnnQuantizerTest, histogram_positive_and_negative_to_3) { const auto& values = positive_and_negative_values; auto min_val = *std::min_element(values.begin(), values.end()); auto max_val = *std::max_element(values.begin(), values.end()); framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); std::vector histogram; float bin_width; std::tie(histogram, bin_width) = Histogram(var_tensor, min_val, max_val, 3); ASSERT_NEAR(bin_width, std::abs(max_val - min_val) / 3.0f, abs_error) << "Improperly calculated bin_width."; ASSERT_EQ(histogram[0], 3); ASSERT_EQ(histogram[1], 5); ASSERT_EQ(histogram[2], 2); } TEST_F(MkldnnQuantizerTest, histogram_zero_bins) { const auto& values = non_negative_values; auto min_val = *std::min_element(values.begin(), values.end()); auto max_val = *std::max_element(values.begin(), values.end()); framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); ASSERT_THROW(Histogram(var_tensor, min_val, max_val, 0), platform::EnforceNotMet); } TEST_F(MkldnnQuantizerTest, histogram_empty) { // empty tensor ASSERT_THROW(Histogram({}, -1, 1, 1), platform::EnforceNotMet); // zero tensor framework::LoDTensor var_tensor; var_tensor.Resize({0}); var_tensor.mutable_data(platform::CPUPlace()); ASSERT_THROW(Histogram(var_tensor, -1, 1, 1), platform::EnforceNotMet); } TEST_F(MkldnnQuantizerTest, kl_scaling_factor_signed) { const auto& values = positive_and_negative_values; framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); bool is_unsigned; framework::LoDTensor lod_tensor; std::tie(is_unsigned, lod_tensor) = GetKLScalingFactor(var_tensor, false); ASSERT_EQ(is_unsigned, false); ASSERT_EQ(lod_tensor.numel(), 1); ASSERT_NEAR(lod_tensor.data()[0], 1.0 / 0.0899106152344, abs_error); } TEST_F(MkldnnQuantizerTest, max_scaling_factor_signed) { const auto& values = positive_and_negative_values; auto max_val = *std::max_element(values.begin(), values.end()); framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); bool is_unsigned; framework::LoDTensor lod_tensor; std::tie(is_unsigned, lod_tensor) = GetMaxScalingFactor(var_tensor, false); ASSERT_EQ(is_unsigned, false); ASSERT_EQ(lod_tensor.numel(), 1); ASSERT_NEAR(lod_tensor.data()[0], 1.0 / max_val, abs_error); } TEST_F(MkldnnQuantizerTest, max_scaling_factor_unsigned) { const auto& values = non_negative_values; auto max_val = *std::max_element(values.begin(), values.end()); framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); bool is_unsigned; framework::LoDTensor lod_tensor; std::tie(is_unsigned, lod_tensor) = GetMaxScalingFactor(var_tensor, true); ASSERT_EQ(is_unsigned, true); ASSERT_EQ(lod_tensor.numel(), 1); ASSERT_NEAR(lod_tensor.data()[0], 1.0 / max_val, abs_error); } TEST_F(MkldnnQuantizerTest, max_scaling_factor_chwise_unsigned) { const auto& values = non_negative_values; auto max_val = *std::max_element(values.begin(), values.end()); int channels = 3; framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(channels, 1, 1, values.size())); for (int i = 0; i < channels; i++) std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace()) + i * values.size()); bool is_unsigned; framework::LoDTensor lod_tensor; std::tie(is_unsigned, lod_tensor) = GetMaxChScalingFactor(var_tensor, true); ASSERT_EQ(is_unsigned, true); ASSERT_EQ(lod_tensor.numel(), channels); for (int i = 0; i < channels; i++) { ASSERT_NEAR(lod_tensor.data()[i], 1.0 / max_val, abs_error); } } TEST_F(MkldnnQuantizerTest, kl_scaling_factor_unsigned) { const auto& values = non_negative_values; framework::LoDTensor var_tensor; var_tensor.Resize(framework::make_dim(values.size())); std::copy(begin(values), end(values), var_tensor.mutable_data(platform::CPUPlace())); bool is_unsigned; framework::LoDTensor lod_tensor; std::tie(is_unsigned, lod_tensor) = GetKLScalingFactor(var_tensor, true); ASSERT_EQ(is_unsigned, true); ASSERT_EQ(lod_tensor.numel(), 1); ASSERT_NEAR(lod_tensor.data()[0], 1.0 / 0.0252845321362, abs_error); } #endif #ifdef PADDLE_WITH_CUDA TEST(AnalysisPredictor, bf16_gpu_pass_strategy) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(true); config.EnableUseGpu(100, 0); config.EnableMkldnnBfloat16(); #ifdef PADDLE_WITH_MKLDNN if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) ASSERT_EQ(config.mkldnn_bfloat16_enabled(), true); else ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false); #else ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false); #endif } #endif TEST(AnalysisPredictor, bf16_pass_strategy) { std::vector passes; PassStrategy passStrategy(passes); passStrategy.EnableMkldnnBfloat16(); } } // namespace paddle namespace paddle_infer { TEST(Predictor, Run) { Config config; config.SetModel(FLAGS_dirname); auto predictor = CreatePredictor(config); auto w0 = predictor->GetInputHandle("firstw"); auto w1 = predictor->GetInputHandle("secondw"); auto w2 = predictor->GetInputHandle("thirdw"); auto w3 = predictor->GetInputHandle("forthw"); w0->Reshape({4, 1}); w1->Reshape({4, 1}); w2->Reshape({4, 1}); w3->Reshape({4, 1}); auto* w0_data = w0->mutable_data(PlaceType::kCPU); auto* w1_data = w1->mutable_data(PlaceType::kCPU); auto* w2_data = w2->mutable_data(PlaceType::kCPU); auto* w3_data = w3->mutable_data(PlaceType::kCPU); for (int i = 0; i < 4; i++) { w0_data[i] = i; w1_data[i] = i; w2_data[i] = i; w3_data[i] = i; } predictor->Run(); auto out = predictor->GetOutputHandle("fc_1.tmp_2"); PlaceType place; int size = 0; out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); predictor->TryShrinkMemory(); } } // namespace paddle_infer