// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/interpolate_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/interpolate_function.h" namespace phi { template static inline T cubic_interp(T x0, T x1, T x2, T x3, T t) { T coeffs[4]; funcs::get_cubic_upsample_coefficients(coeffs, t); return x0 * coeffs[0] + x1 * coeffs[1] + x2 * coeffs[2] + x3 * coeffs[3]; } template static void LinearInterpolation(const DenseTensor& input, DenseTensor* output, const float ratio_w, const int in_w, const int n, const int c, const int out_w, const bool align_corners, const int align_mode, const DataLayout data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); bool align_flag = (align_mode == 0 && !align_corners); std::vector vx_w, vx_e; std::vector vd_w, vd_e; vx_w.reserve(out_w); vx_e.reserve(out_w); vd_w.reserve(out_w); vd_e.reserve(out_w); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int l = 0; l < out_w; l++) { int x_w = align_flag ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; // w int x_e = (x_w < (in_w - 1)) ? (x_w + 1) : x_w; // w_id float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; // w1lambda float d_e = 1.f - d_w; // w2lambda { vx_w[l] = x_w; vx_e[l] = x_e; vd_w[l] = d_w; vd_e[l] = d_e; } } #ifdef PADDLE_WITH_MKLML #pragma omp parallel for collapse(3) #endif for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels for (int l = 0; l < out_w; l++) { // linear interpolation T out_t; if (data_layout == DataLayout::kNCHW) { out_t = input_t(i, j, vx_w[l]) * vd_e[l] + input_t(i, j, vx_e[l]) * vd_w[l]; output_t(i, j, l) = out_t; } else { out_t = input_t(i, vx_w[l], j) * vd_e[l] + input_t(i, vx_e[l], j) * vd_w[l]; output_t(i, l, j) = out_t; } } } } } template static void BilinearInterpolation(const DenseTensor& input, DenseTensor* output, const float ratio_h, const float ratio_w, const int in_h, const int in_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const int align_mode, const DataLayout data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); bool align_flag = (align_mode == 0 && !align_corners); std::vector vy_n, vy_s; std::vector vd_n, vd_s; vy_n.reserve(out_h); vy_s.reserve(out_h); vd_n.reserve(out_h); vd_s.reserve(out_h); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int k = 0; k < out_h; k++) { int y_n = align_flag ? static_cast(ratio_h * (k + 0.5) - 0.5) : static_cast(ratio_h * k); y_n = (y_n > 0) ? y_n : 0; int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1); float idx_src_y = ratio_h * (k + 0.5) - 0.5; idx_src_y = (idx_src_y > 0) ? idx_src_y : 0; float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n; float d_s = 1.f - d_n; { vy_n[k] = y_n; vy_s[k] = y_s; vd_n[k] = d_n; vd_s[k] = d_s; } } std::vector vx_w, vx_e; std::vector vd_w, vd_e; vx_w.reserve(out_w); vx_e.reserve(out_w); vd_w.reserve(out_w); vd_e.reserve(out_w); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int l = 0; l < out_w; l++) { int x_w = (align_mode == 0 && !align_corners) ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; float d_e = 1.f - d_w; { vx_w[l] = x_w; vx_e[l] = x_e; vd_w[l] = d_w; vd_e[l] = d_e; } } #ifdef PADDLE_WITH_MKLML #pragma omp parallel for collapse(4) #endif for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels for (int k = 0; k < out_h; k++) { // loop for images for (int l = 0; l < out_w; l++) { // bilinear interpolation T out_t; if (data_layout == DataLayout::kNCHW) { out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] + input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] + input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] + input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l]; output_t(i, j, k, l) = out_t; } else { out_t = input_t(i, vy_n[k], vx_w[l], j) * vd_s[k] * vd_e[l] + input_t(i, vy_s[k], vx_w[l], j) * vd_n[k] * vd_e[l] + input_t(i, vy_n[k], vx_e[l], j) * vd_s[k] * vd_w[l] + input_t(i, vy_s[k], vx_e[l], j) * vd_n[k] * vd_w[l]; output_t(i, k, l, j) = out_t; } } } } } } template static void NearestNeighborInterpolate(const DenseTensor& input, DenseTensor* output, const float ratio_h, const float ratio_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const DataLayout& data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); for (int k = 0; k < out_h; k++) { // loop for images int in_k = (align_corners) ? static_cast(ratio_h * k + 0.5) : static_cast(ratio_h * k); for (int l = 0; l < out_w; l++) { int in_l = (align_corners) ? static_cast(ratio_w * l + 0.5) : static_cast(ratio_w * l); for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels if (data_layout == DataLayout::kNCHW) { output_t(i, j, k, l) = input_t(i, j, in_k, in_l); } else { output_t(i, k, l, j) = input_t(i, in_k, in_l, j); } } } } } } template static void BicubicInterpolation(const DenseTensor& input, DenseTensor* output, const float ratio_h, const float ratio_w, const int in_h, const int in_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const DataLayout data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); for (int k = 0; k < out_h; k++) { // loop for images T y_n = align_corners ? static_cast(ratio_h * k) : static_cast(ratio_h * (k + 0.5) - 0.5); int input_y = floorf(y_n); const T y_t = y_n - input_y; for (int l = 0; l < out_w; l++) { T x_n = align_corners ? static_cast(ratio_w * l) : static_cast(ratio_w * (l + 0.5) - 0.5); int input_x = floorf(x_n); const T x_t = x_n - input_x; for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels T coefficients[4]; // interp 4 times in x direction for (int ii = 0; ii < 4; ii++) { int access_y = std::max(std::min(input_y - 1 + ii, in_h - 1), static_cast(0)); int access_x_0 = std::max(std::min(input_x - 1, in_w - 1), static_cast(0)); int access_x_1 = std::max(std::min(input_x + 0, in_w - 1), static_cast(0)); int access_x_2 = std::max(std::min(input_x + 1, in_w - 1), static_cast(0)); int access_x_3 = std::max(std::min(input_x + 2, in_w - 1), static_cast(0)); if (data_layout == DataLayout::kNCHW) { coefficients[ii] = cubic_interp(input_t(i, j, access_y, access_x_0), input_t(i, j, access_y, access_x_1), input_t(i, j, access_y, access_x_2), input_t(i, j, access_y, access_x_3), x_t); } else { coefficients[ii] = cubic_interp(input_t(i, access_y, access_x_0, j), input_t(i, access_y, access_x_1, j), input_t(i, access_y, access_x_2, j), input_t(i, access_y, access_x_3, j), x_t); } } // interp y direction if (data_layout == DataLayout::kNCHW) { output_t(i, j, k, l) = cubic_interp(coefficients[0], coefficients[1], coefficients[2], coefficients[3], y_t); } else { output_t(i, k, l, j) = cubic_interp(coefficients[0], coefficients[1], coefficients[2], coefficients[3], y_t); } } } } } } template static void TrilinearInterpolation(const DenseTensor& input, DenseTensor* output, const float ratio_d, const float ratio_h, const float ratio_w, const int in_d, const int in_h, const int in_w, const int n, const int c, const int out_d, const int out_h, const int out_w, const bool align_corners, const int align_mode, const DataLayout& data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); bool align_flag = (align_mode == 0 && !align_corners); std::vector vt_f, vt_b; std::vector vd_f, vd_b; vt_f.reserve(out_d); vt_b.reserve(out_d); vd_f.reserve(out_d); vd_b.reserve(out_d); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int j = 0; j < out_d; j++) { int t_f = align_flag ? static_cast(ratio_d * (j + 0.5) - 0.5) : static_cast(ratio_d * j); t_f = (t_f > 0) ? t_f : 0; int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1); float idx_src_t = ratio_d * (j + 0.5) - 0.5; idx_src_t = (idx_src_t > 0) ? idx_src_t : 0; float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f; float d_b = 1.f - d_f; { vt_f[j] = t_f; vt_b[j] = t_b; vd_f[j] = d_f; vd_b[j] = d_b; } } std::vector vy_n, vy_s; std::vector vd_n, vd_s; vy_n.reserve(out_h); vy_s.reserve(out_h); vd_n.reserve(out_h); vd_s.reserve(out_h); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int k = 0; k < out_h; k++) { int y_n = align_flag ? static_cast(ratio_h * (k + 0.5) - 0.5) : static_cast(ratio_h * k); y_n = (y_n > 0) ? y_n : 0; int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1); float idx_src_y = ratio_h * (k + 0.5) - 0.5; idx_src_y = (idx_src_y > 0) ? idx_src_y : 0; float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n; float d_s = 1.f - d_n; { vy_n[k] = y_n; vy_s[k] = y_s; vd_n[k] = d_n; vd_s[k] = d_s; } } std::vector vx_w, vx_e; std::vector vd_w, vd_e; vx_w.reserve(out_w); vx_e.reserve(out_w); vd_w.reserve(out_w); vd_e.reserve(out_w); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int l = 0; l < out_w; l++) { int x_w = (align_mode == 0 && !align_corners) ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; float d_e = 1.f - d_w; { vx_w[l] = x_w; vx_e[l] = x_e; vd_w[l] = d_w; vd_e[l] = d_e; } } #ifdef PADDLE_WITH_MKLML #pragma omp parallel for collapse(5) #endif for (int b = 0; b < n; b++) { // loop for batches for (int i = 0; i < c; i++) { // loop for channels for (int j = 0; j < out_d; j++) { // loop for D, H, W for (int k = 0; k < out_h; k++) { for (int l = 0; l < out_w; l++) { // trilinear interpolation if (data_layout == DataLayout::kNCHW) { T out_t = input_t(b, i, vt_f[j], vy_n[k], vx_w[l]) * vd_b[j] * vd_s[k] * vd_e[l] + input_t(b, i, vt_f[j], vy_n[k], vx_e[l]) * vd_b[j] * vd_s[k] * vd_w[l] + input_t(b, i, vt_f[j], vy_s[k], vx_w[l]) * vd_b[j] * vd_n[k] * vd_e[l] + input_t(b, i, vt_f[j], vy_s[k], vx_e[l]) * vd_b[j] * vd_n[k] * vd_w[l] + input_t(b, i, vt_b[j], vy_n[k], vx_w[l]) * vd_f[j] * vd_s[k] * vd_e[l] + input_t(b, i, vt_b[j], vy_n[k], vx_e[l]) * vd_f[j] * vd_s[k] * vd_w[l] + input_t(b, i, vt_b[j], vy_s[k], vx_w[l]) * vd_f[j] * vd_n[k] * vd_e[l] + input_t(b, i, vt_b[j], vy_s[k], vx_e[l]) * vd_f[j] * vd_n[k] * vd_w[l]; output_t(b, i, j, k, l) = out_t; } else { T out_t = input_t(b, vt_f[j], vy_n[k], vx_w[l], i) * vd_b[j] * vd_s[k] * vd_e[l] + input_t(b, vt_f[j], vy_n[k], vx_e[l], i) * vd_b[j] * vd_s[k] * vd_w[l] + input_t(b, vt_f[j], vy_s[k], vx_w[l], i) * vd_b[j] * vd_n[k] * vd_e[l] + input_t(b, vt_f[j], vy_s[k], vx_e[l], i) * vd_b[j] * vd_n[k] * vd_w[l] + input_t(b, vt_b[j], vy_n[k], vx_w[l], i) * vd_f[j] * vd_s[k] * vd_e[l] + input_t(b, vt_b[j], vy_n[k], vx_e[l], i) * vd_f[j] * vd_s[k] * vd_w[l] + input_t(b, vt_b[j], vy_s[k], vx_w[l], i) * vd_f[j] * vd_n[k] * vd_e[l] + input_t(b, vt_b[j], vy_s[k], vx_e[l], i) * vd_f[j] * vd_n[k] * vd_w[l]; output_t(b, j, k, l, i) = out_t; } } } } } } } template static void NearestNeighbor3DInterpolate(const DenseTensor& input, DenseTensor* output, const float ratio_d, const float ratio_h, const float ratio_w, const int n, const int c, const int out_d, const int out_h, const int out_w, const bool align_corners, const DataLayout& data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); for (int d = 0; d < out_d; d++) { // loop for images int in_d = (align_corners) ? static_cast(ratio_d * d + 0.5) : static_cast(ratio_d * d); for (int k = 0; k < out_h; k++) { int in_k = (align_corners) ? static_cast(ratio_h * k + 0.5) : static_cast(ratio_h * k); for (int l = 0; l < out_w; l++) { int in_l = (align_corners) ? static_cast(ratio_w * l + 0.5) : static_cast(ratio_w * l); for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels if (data_layout == DataLayout::kNCHW) { output_t(i, j, d, k, l) = input_t(i, j, in_d, in_k, in_l); } else { // NDHWC output_t(i, d, k, l, j) = input_t(i, in_d, in_k, in_l, j); } } } } } } } template static void Interpolate1DCPUFwd( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout_str, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; funcs::ExtractNCDWH(x.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); float scale_w = -1.; if (size_tensor && size_tensor->size() > 0) { // have size tensor auto new_size = funcs::get_new_shape(size_tensor.get()); out_w = new_size[0]; } else { if (scale_tensor) { auto scale_data = funcs::get_new_data_from_tensor(scale_tensor.get_ptr()); scale_w = scale_data[0]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); } else { if (scale.size() > 0) { scale_w = scale[0]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); } } if (scale_w > 0.) { out_w = static_cast(in_w * scale_w); } if (out_size) { auto out_size_data = funcs::get_new_data_from_tensor(out_size.get_ptr()); out_w = out_size_data[0]; } } PADDLE_ENFORCE_GT( out_w, 0, errors::InvalidArgument("out_w in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); phi::DDim dim_out; if (data_layout == DataLayout::kNCHW) { dim_out = {n, c, out_w}; } else { dim_out = {n, out_w, c}; } output->Resize(dim_out); dev_ctx.template Alloc(output); if (in_w == out_w) { paddle::framework::TensorCopy(x, dev_ctx.GetPlace(), output); return; } float ratio_w = 0.f; if (out_w > 1) { float new_scale_w = 0.f; new_scale_w = (scale_w > 0) ? static_cast(1. / scale_w) : static_cast(in_w) / out_w; ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(new_scale_w); } if ("linear" == interp_method) { LinearInterpolation(x, output, ratio_w, in_w, n, c, out_w, align_corners, align_mode, data_layout); } } template static void Interpolate2DCPUFwd( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout_str, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; funcs::ExtractNCDWH(x.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); float scale_h = -1; float scale_w = -1; if (size_tensor && size_tensor->size() > 0) { // have size tensor auto new_size = funcs::get_new_shape(size_tensor.get()); out_h = new_size[0]; out_w = new_size[1]; } else { if (scale_tensor) { auto scale_data = funcs::get_new_data_from_tensor(scale_tensor.get_ptr()); if (scale_data.size() > 1) { scale_h = scale_data[0]; scale_w = scale_data[1]; } else { scale_h = scale_data[0]; scale_w = scale_data[0]; } PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); } else { if (scale.size() > 1) { scale_h = scale[0]; scale_w = scale[1]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); } } if (scale_h > 0. && scale_w > 0.) { out_h = static_cast(in_h * scale_h); out_w = static_cast(in_w * scale_w); } if (out_size) { auto out_size_data = funcs::get_new_data_from_tensor(out_size.get_ptr()); out_h = out_size_data[0]; out_w = out_size_data[1]; } } PADDLE_ENFORCE_GT( out_h, 0, errors::InvalidArgument("out_h in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); PADDLE_ENFORCE_GT( out_w, 0, errors::InvalidArgument("out_w in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); phi::DDim dim_out; if (data_layout == DataLayout::kNCHW) { dim_out = {n, c, out_h, out_w}; } else { dim_out = {n, out_h, out_w, c}; } output->Resize(dim_out); dev_ctx.template Alloc(output); if (in_h == out_h && in_w == out_w) { paddle::framework::TensorCopy(x, dev_ctx.GetPlace(), output); return; } float ratio_h = 0.f; float ratio_w = 0.f; if (out_h > 1) { float new_scale_h = 0.f; new_scale_h = (scale_h > 0) ? static_cast(1. / scale_h) : static_cast(in_h) / out_h; ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(new_scale_h); } if (out_w > 1) { float new_scale_w = 0.f; new_scale_w = (scale_w > 0) ? static_cast(1. / scale_w) : static_cast(in_w) / out_w; ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(new_scale_w); } if ("bilinear" == interp_method) { BilinearInterpolation(x, output, ratio_h, ratio_w, in_h, in_w, n, c, out_h, out_w, align_corners, align_mode, data_layout); } else if ("nearest" == interp_method) { NearestNeighborInterpolate(x, output, ratio_h, ratio_w, n, c, out_h, out_w, align_corners, data_layout); } else if ("bicubic" == interp_method) { BicubicInterpolation(x, output, ratio_h, ratio_w, in_h, in_w, n, c, out_h, out_w, align_corners, data_layout); } } template static void Interpolate3DCPUFwd( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout_str, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; funcs::ExtractNCDWH(x.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); float scale_d = -1; float scale_h = -1; float scale_w = -1; if (size_tensor && size_tensor->size() > 0) { // have size tensor auto new_size = funcs::get_new_shape(size_tensor.get()); out_d = new_size[0]; out_h = new_size[1]; out_w = new_size[2]; } else { if (scale_tensor) { auto scale_data = funcs::get_new_data_from_tensor(scale_tensor.get_ptr()); if (scale_data.size() > 1) { scale_d = scale_data[0]; scale_h = scale_data[1]; scale_w = scale_data[2]; } else { scale_d = scale_data[0]; scale_h = scale_data[0]; scale_w = scale_data[0]; } PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); PADDLE_ENFORCE_EQ( scale_d > 0, true, errors::InvalidArgument( "The scale_d in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_d)); } else { if (scale.size() > 1) { scale_d = scale[0]; scale_h = scale[1]; scale_w = scale[2]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); PADDLE_ENFORCE_EQ( scale_d > 0, true, errors::InvalidArgument( "The scale_d in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_d)); } } if (scale_w > 0. && scale_h > 0. && scale_d > 0.) { out_d = static_cast(in_d * scale_d); out_h = static_cast(in_h * scale_h); out_w = static_cast(in_w * scale_w); } if (out_size) { auto out_size_data = funcs::get_new_data_from_tensor(out_size.get_ptr()); out_d = out_size_data[0]; out_h = out_size_data[1]; out_w = out_size_data[2]; } } PADDLE_ENFORCE_GT( out_d, 0, errors::InvalidArgument("out_d in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); PADDLE_ENFORCE_GT( out_h, 0, errors::InvalidArgument("out_h in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); PADDLE_ENFORCE_GT( out_w, 0, errors::InvalidArgument("out_w in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); phi::DDim dim_out; if (data_layout == DataLayout::kNCHW) { dim_out = {n, c, out_d, out_h, out_w}; } else { dim_out = {n, out_d, out_h, out_w, c}; } output->Resize(dim_out); dev_ctx.template Alloc(output); if (in_d == out_d && in_h == out_h && in_w == out_w) { paddle::framework::TensorCopy(x, dev_ctx.GetPlace(), output); return; } float ratio_d = 0.f; float ratio_h = 0.f; float ratio_w = 0.f; if (out_d > 1) { float new_scale_d = 0.f; new_scale_d = (scale_d > 0) ? static_cast(1. / scale_d) : static_cast(in_d) / out_d; ratio_d = (align_corners) ? static_cast(in_d - 1) / (out_d - 1) : static_cast(new_scale_d); } if (out_h > 1) { float new_scale_h = 0.f; new_scale_h = (scale_h > 0) ? static_cast(1. / scale_h) : static_cast(in_h) / out_h; ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(new_scale_h); } if (out_w > 1) { float new_scale_w = 0.f; new_scale_w = (scale_w > 0) ? static_cast(1. / scale_w) : static_cast(in_w) / out_w; ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(new_scale_w); } if ("trilinear" == interp_method) { TrilinearInterpolation(x, output, ratio_d, ratio_h, ratio_w, in_d, in_h, in_w, n, c, out_d, out_h, out_w, align_corners, align_mode, data_layout); } else if ("nearest" == interp_method) { NearestNeighbor3DInterpolate(x, output, ratio_d, ratio_h, ratio_w, n, c, out_d, out_h, out_w, align_corners, data_layout); } } template void InterpolateKernel( const Context& ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { auto input_dims = x.dims(); if (input_dims.size() == 3) { // 1D interpolation Interpolate1DCPUFwd(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_w, scale, interp_method, align_corners, align_mode, output); } else if (input_dims.size() == 4) { // 2D interpolation Interpolate2DCPUFwd(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_h, out_w, scale, interp_method, align_corners, align_mode, output); } else if (input_dims.size() == 5) { // 3D interpolation Interpolate3DCPUFwd(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, output); } } template void BilinearInterpKernel( const Context& ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { InterpolateKernel(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, output); } template void NearestInterpKernel( const Context& ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { InterpolateKernel(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, output); } template void TrilinearInterpKernel( const Context& ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { InterpolateKernel(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, output); } template void LinearInterpKernel( const Context& ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { InterpolateKernel(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, output); } template void BicubicInterpKernel( const Context& ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* output) { InterpolateKernel(ctx, x, out_size, size_tensor, scale_tensor, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, output); } } // namespace phi PD_REGISTER_KERNEL(bilinear_interp_v2, CPU, ALL_LAYOUT, phi::BilinearInterpKernel, float, double, uint8_t) { kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND); kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND); } PD_REGISTER_KERNEL(nearest_interp_v2, CPU, ALL_LAYOUT, phi::NearestInterpKernel, float, double, int, int64_t, uint8_t) { kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND); kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND); } PD_REGISTER_KERNEL(trilinear_interp_v2, CPU, ALL_LAYOUT, phi::TrilinearInterpKernel, float, double, uint8_t) { kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND); kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND); } PD_REGISTER_KERNEL(linear_interp, CPU, ALL_LAYOUT, phi::LinearInterpKernel, float, double, uint8_t) { kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND); kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND); } PD_REGISTER_KERNEL(bicubic_interp_v2, CPU, ALL_LAYOUT, phi::BicubicInterpKernel, float, double) { kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND); kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND); }