# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle.distributed import fleet from paddle.fluid.dygraph.container import Sequential import paddle.nn as nn from paddle.fluid.dygraph.layers import Layer from paddle.distributed.fleet.meta_parallel import LayerDesc, PipelineLayer import paddle.nn.functional as F class ReshapeHelp(Layer): def __init__(self, shape): super(ReshapeHelp, self).__init__() self.shape = shape def forward(self, x): return x.reshape(shape=self.shape) class AlexNet(Layer): def __init__(self, num_classes=10): super(AlexNet, self).__init__() self.features = Sequential( nn.Conv2D(1, 64, kernel_size=11, stride=4, padding=5), nn.ReLU(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Conv2D(64, 192, kernel_size=5, padding=2), nn.ReLU(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Conv2D(192, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2D(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2D(256, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2D(kernel_size=2, stride=2), ) self.reshape_layer = ReshapeHelp(shape=[-1, 256]) self.classifier = nn.Linear(256, num_classes) self.loss_fn = nn.loss.CrossEntropyLoss() def forward(self, x, y): x = self.features(x) x = self.reshape_layer(x) x = self.classifier(x) return self.loss_fn(x, y) class AlexNetPipe(AlexNet): def to_layers(self): feat = [self.features[i] for i in range(len(self.features))] loss_fn = [self.reshape_layer, self.classifier] feat.extend(loss_fn) return feat class AlexNetPipeDesc(PipelineLayer): def __init__(self, num_classes=10, **kwargs): self.num_classes = num_classes decs = [ LayerDesc(nn.Conv2D, 1, 64, kernel_size=11, stride=4, padding=5), LayerDesc(nn.ReLU), LayerDesc(nn.MaxPool2D, kernel_size=2, stride=2), LayerDesc(nn.Conv2D, 64, 192, kernel_size=5, padding=2), F.relu, LayerDesc(nn.MaxPool2D, kernel_size=2, stride=2), LayerDesc(nn.Conv2D, 192, 384, kernel_size=3, padding=1), F.relu, LayerDesc(nn.Conv2D, 384, 256, kernel_size=3, padding=1), F.relu, LayerDesc(nn.Conv2D, 256, 256, kernel_size=3, padding=1), F.relu, LayerDesc(nn.MaxPool2D, kernel_size=2, stride=2), LayerDesc(ReshapeHelp, shape=[-1, 256]), LayerDesc(nn.Linear, 256, self.num_classes), # classifier ] super(AlexNetPipeDesc, self).__init__( layers=decs, loss_fn=nn.CrossEntropyLoss(), **kwargs ) class TestPipeLayerAPI(unittest.TestCase): def setUp(self): strategy = fleet.DistributedStrategy() self.pipeline_parallel_size = 2 strategy.hybrid_configs = { "dp_degree": 1, "mp_degree": 1, "pp_degree": self.pipeline_parallel_size, } fleet.init(is_collective=True, strategy=strategy) self.hcg = fleet.get_hybrid_communicate_group() def test_pipelayer_desc(self): pipe_model = AlexNetPipeDesc(num_stages=self.pipeline_parallel_size) np.testing.assert_array_equal(len(pipe_model.parameters()), 6) def test_pipelayer_sequential(self): init_net = AlexNetPipe() pipe_model = PipelineLayer( layers=init_net.to_layers(), num_stages=self.pipeline_parallel_size, loss_fn=nn.CrossEntropyLoss(), ) stage_id = self.hcg.get_stage_id() init_parameters = init_net.parameters() pipe_parameters = pipe_model.parameters() part_number = len(init_parameters) // 2 if stage_id == 0: for idx in range(part_number): param_a = init_parameters[idx] param_b = pipe_parameters[idx] np.testing.assert_array_equal(param_a.name, param_b.name) np.testing.assert_allclose(param_a.numpy(), param_b.numpy()) elif stage_id == 1: for idx in range(part_number): param_a = init_parameters[idx + part_number] param_b = pipe_parameters[idx] np.testing.assert_array_equal(param_a.name, param_b.name) np.testing.assert_allclose(param_a.numpy(), param_b.numpy()) if __name__ == '__main__': unittest.main()