# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from paddle.fluid.optimizer import Momentum, DGCMomentumOptimizer from .meta_optimizer_base import MetaOptimizerBase import logging __all__ = [] class DGCOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(DGCOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.dgc_opt = None # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = [] self.meta_optimizers_black_list = [] def _set_basic_info( self, loss, role_maker, user_defined_optimizer, user_defined_strategy ): super(DGCOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy ) def _init_dgc_opt(self): if self.dgc_opt is not None: return opt = self.inner_opt if not self.role_maker._is_collective: return if not isinstance(opt, Momentum): return configs = self.user_defined_strategy.dgc_configs if len(configs['sparsity']) == 0: # default is [0.999] configs['sparsity'] = [0.999] self.dgc_opt = DGCMomentumOptimizer( learning_rate=opt._learning_rate, momentum=opt._momentum, rampup_begin_step=configs['rampup_begin_step'], rampup_step=configs['rampup_step'], sparsity=configs['sparsity'], parameter_list=opt._parameter_list, use_nesterov=opt._use_nesterov, num_trainers=self.role_maker._worker_num(), regularization=opt.regularization, grad_clip=opt._grad_clip, name=opt._name, ) def _can_apply(self): if not self.role_maker._is_collective: return False if self.user_defined_strategy.dgc: if not isinstance(self.inner_opt, Momentum): logging.warn("dgc only works on Momentum optimizer") return False if self.role_maker._worker_num() <= 1: logging.warn("dgc only works on multi cards") return False return True return False def _disable_strategy(self, dist_strategy): dist_strategy.dgc = False dist_strategy.dgc_configs = {} def _enable_strategy(self, dist_strategy, context): dist_strategy.dgc = True dist_strategy.dgc_configs = {"rampup_begin_step": 0, "rampup_step": 1} def backward( self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None, ): self._init_dgc_opt() return self.dgc_opt.backward( loss, startup_program, parameter_list, no_grad_set, callbacks ) def apply_gradients(self, params_grads): self._init_dgc_opt() return self.dgc_opt.apply_gradients(params_grads=params_grads) def apply_optimize(self, loss, startup_program, params_grads): self._init_dgc_opt() return self.dgc_opt.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads ) def minimize_impl( self, loss, startup_program=None, parameter_list=None, no_grad_set=None ): self._init_dgc_opt() optimize_ops, params_grads = self.dgc_opt.minimize( loss, startup_program, parameter_list, no_grad_set ) return optimize_ops, params_grads