// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/expand_grad_kernel.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void ExpandGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const IntArray& shape, DenseTensor* in_grad) { const auto& onednn_engine = dev_ctx.GetEngine(); auto in_grad_vec_dims = vectorize(in_grad->dims()); auto out_grad_vec_dims = vectorize(out_grad.dims()); if (in_grad_vec_dims.size() != out_grad_vec_dims.size()) { in_grad_vec_dims.insert(in_grad_vec_dims.begin(), out_grad_vec_dims.size() - in_grad_vec_dims.size(), 1); } auto& astream = OneDNNContext::tls().get_stream(); if (out_grad_vec_dims == in_grad_vec_dims) { dnnl::memory::data_type out_grad_type = funcs::ToOneDNNDataType(out_grad.dtype()); if (out_grad_vec_dims.empty()) { out_grad_vec_dims = std::vector{1}; } funcs::ReorderOneDNNHandler reorder_handler( out_grad_vec_dims, out_grad.dtype(), out_grad_type, onednn_engine); auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory( out_grad.mem_desc(), funcs::to_void_cast(out_grad.data())); auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory( in_grad, funcs::GetPlainOneDNNFormat(in_grad_vec_dims.size()), dev_ctx.GetPlace()); auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p, reorder_dst_memory_p); reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p); astream.wait(); in_grad->set_mem_desc(reorder_dst_memory_p->get_desc()); } else { funcs::ReductionOneDNNHandler handler(dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine, dev_ctx.GetPlace(), &out_grad, in_grad, in_grad_vec_dims); auto src_memory_p = handler.AcquireSrcMemory(&out_grad); auto dst_memory_p = handler.AcquireDstMemory(in_grad); std::unordered_map reduction_args = { {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}; auto reduction_p = handler.AcquireForwardPrimitive(); reduction_p->execute(astream, reduction_args); astream.wait(); in_grad->set_layout(DataLayout::ONEDNN); const auto in_grad_md_dims = in_grad->dims().size() != 0 ? vectorize(in_grad->dims()) : std::vector{1}; in_grad->set_mem_desc(dst_memory_p->get_desc().reshape(in_grad_md_dims)); } } } // namespace phi PD_REGISTER_KERNEL(expand_grad, OneDNN, ONEDNN, phi::ExpandGradKernel, float, phi::dtype::bfloat16) {}