/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/framework/op_registry.h" #include "paddle/platform/cuda_helper.h" #include "paddle/platform/gpu_info.h" namespace paddle { namespace operators { using platform::PADDLE_CUDA_NUM_THREADS; template __global__ void FillFirstRow(T* dist, const int N) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < N + 1) { dist[idx] = idx; } } template __global__ void FillFirstColumn(T* dist, const int M, const int N) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < M + 1) { dist[idx * (N + 1)] = idx; } } template __global__ void Levenshtein(T* dist, const T* x1, const T* x2, const int M, const int N, const int start) { int idx = blockDim.x * blockIdx.x + threadIdx.x; int offset = N; int index = start + idx * offset; int row = index / (N + 1); int col = index % (N + 1); if (row > 0 && col > 0 && row < M + 1 && col < N + 1) { int cost = x1[row - 1] == x2[col - 1] ? 0 : 1; int dels = dist[(row - 1) * (N + 1) + col] + 1; int ins = dist[row * (N + 1) + col - 1] + 1; int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost; dist[index] = min(dels, min(ins, subs)); } } template class CTCEditDistanceGPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* out_t = ctx.Output("Out"); auto* x1_t = ctx.Input("X1"); auto* x2_t = ctx.Input("X2"); out_t->mutable_data(ctx.GetPlace()); auto normalized = ctx.Attr("normalized"); auto stream = reinterpret_cast( ctx.device_context()) .stream(); auto m = x1_t->numel(); auto n = x2_t->numel(); T distance = 0; if (m == 0) { distance = n; } else if (n == 0) { distance = m; } else { framework::Tensor dist_t; dist_t.Resize({m + 1, n + 1}); dist_t.mutable_data(ctx.GetPlace()); auto dist = dist_t.data(); auto x1 = x1_t->data(); auto x2 = x2_t->data(); FillFirstColumn<<<1 + m / PADDLE_CUDA_NUM_THREADS, PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n); FillFirstRow<<<1 + n / PADDLE_CUDA_NUM_THREADS, PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n); // compute the elements of distance matrix in the anti-diagonal diretion for (size_t slice = 2; slice < m + n + 1; ++slice) { int z_m = slice < m + 1 ? 0 : slice - m; int z_n = slice < n + 1 ? 0 : slice - n; // number of elments in the same anti-diagonal line int size = slice - (z_m + z_n) + 1; int start = slice < n + 1 ? slice : z_n * (n + 1) - 1; Levenshtein<<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS, PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2, m, n, start); } Place gpu_place = boost::get(ctx.GetPlace()); memory::Copy(platform::CPUPlace(), &distance, gpu_place, dist + m * (n + 1) + n, sizeof(T), stream); } if (normalized) { distance = distance / n; } auto out = out_t->data(); Place gpu_place = boost::get(ctx.GetPlace()); float dist_f = distance; memory::Copy(gpu_place, out, platform::CPUPlace(), &dist_f, sizeof(float), stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( ctc_edit_distance, ops::CTCEditDistanceGPUKernel, ops::CTCEditDistanceGPUKernel);