// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/distributed/collective/reducer.h" #include "paddle/phi/backends/device_guard.h" #include "paddle/phi/backends/device_manager.h" namespace paddle { namespace distributed { static Backend TransToBackend(platform::Place place) { static const std::map type_backend = { {phi::AllocationType::GPU, Backend::GPU}, {phi::AllocationType::CPU, Backend::CPU}, }; phi::AllocationType type = place.GetType(); auto it = type_backend.find(type); PADDLE_ENFORCE_EQ(it != type_backend.end(), true, platform::errors::InvalidArgument( "Place type (%s) is not supported. ", place)); return it->second; } std::vector> Eager_AssignGroupBySize( const std::vector tensors, const std::vector &is_sparse_gradient, const std::vector &group_size_limits, const std::vector &tensor_indices) { PADDLE_ENFORCE_EQ( tensors.size(), is_sparse_gradient.size(), platform::errors::PreconditionNotMet( "tensors len must be equal to is_sparse_gradient len, but " "[%lu] != [%lu]", tensors.size(), is_sparse_gradient.size())); auto check_perm = [](const std::vector &x) -> bool { size_t len = x.size(); std::vector cnt(len, 0); for (size_t i = 0; i < len; ++i) { if (x[i] >= static_cast(len) || x[i] < 0 || cnt[x[i]]) { return false; } cnt[x[i]]++; } return true; }; PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices), platform::errors::PreconditionNotMet( "tensor_indices must be a permutation from 0 to %lu", tensor_indices.size())); // the return vector std::vector> res; // Key: the var type // Value: should use which index in group_size_limits for group size limit std::map group_limit_index; // Key: the var type // Value: std::map, size_t>> next_group; for (size_t i = 0; i < tensors.size(); ++i) { const auto &var = tensors[i]; size_t tensor_real_index = i; if (!tensor_indices.empty()) { tensor_real_index = tensor_indices[i]; } if (is_sparse_gradient[tensor_real_index]) { // we keep sparse var a single group res.push_back({tensor_real_index}); continue; } const auto &var_dtype = var.dtype(); VLOG(3) << "var[" << var.name() << "] 's type is " << var_dtype; auto &group_info = next_group[var_dtype]; int64_t var_size = -1; if (var.is_dense_tensor()) { var_size = std::dynamic_pointer_cast(var.impl())->numel(); } else { VLOG(3) << "var " << var.name() << " is not tensor or selected_rows, so skip it"; continue; } group_info.first.push_back(tensor_real_index); group_info.second += experimental::SizeOf(var_dtype) * var_size; // group_info.second += framework::SizeOfType(var_dtype) * var_size; if (group_limit_index.find(var_dtype) == group_limit_index.end()) { // means it is the first var of var_dtype group_limit_index[var_dtype] = 0; } auto &cur_limit_index = group_limit_index[var_dtype]; if (group_info.second >= group_size_limits[cur_limit_index]) { // exceed group capacity and create a new group res.emplace_back(std::move(group_info.first)); group_info = std::pair, size_t>(); cur_limit_index = (std::min)(cur_limit_index + 1, group_size_limits.size() - 1); } } // add the final groups for (auto &e : next_group) { auto &group_info = e.second; if (!group_info.first.empty()) { res.emplace_back(std::move(group_info.first)); } } for (const auto &group_index : res) { PADDLE_ENFORCE_NE( group_index.empty(), true, platform::errors::PreconditionNotMet( "AssignGroupBySize construct empty group, please check.")); } if (tensor_indices.empty()) { std::sort(res.begin(), res.end(), [](const std::vector &x, const std::vector &y) { return x.front() < y.front(); }); } return res; } template struct ConcatTensorsForAllReduce { void operator()(const DeviceContext &context, const std::vector &dense_tensors_, Tensor *p_dense_contents) { operators::math::ConcatFunctor concat_functor_; concat_functor_( context, dense_tensors_, 0, std::dynamic_pointer_cast(p_dense_contents->impl()) .get()); } }; template struct SplitTensorsForAllReduce { void operator()(const DeviceContext &context, Tensor *p_dense_contents, std::vector *p_dense_tensors) { auto *in = std::dynamic_pointer_cast(p_dense_contents->impl()) .get(); std::vector outs; std::vector shape_refer; outs.reserve(p_dense_tensors->size()); shape_refer.reserve(p_dense_tensors->size()); for (auto &tensor : *p_dense_tensors) { outs.emplace_back(&tensor); shape_refer.emplace_back(&tensor); } operators::math::SplitFunctor split_functor_; split_functor_(context, *in, shape_refer, 0, &outs); } }; #ifdef PADDLE_WITH_CUSTOM_DEVICE // note(wangran16): A temporary solution for all backends. template struct ConcatTensorsForAllReduce { void operator()(const platform::CustomDeviceContext &context, const std::vector &dense_tensors_, Tensor *p_dense_contents) { phi::DeviceGuard guard(context.GetPlace()); auto *out = std::dynamic_pointer_cast(p_dense_contents->impl()) .get(); uint8_t *out_data = reinterpret_cast(out->data()); auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace()); size_t offset = 0; for (const auto &tensor : dense_tensors_) { const uint8_t *in_data = reinterpret_cast(tensor.data()); auto sz = tensor.numel() * sizeof(T); device->MemoryCopyD2D(out_data + offset, in_data, sz, nullptr); offset += sz; } } }; template struct SplitTensorsForAllReduce { void operator()(const platform::CustomDeviceContext &context, Tensor *p_dense_contents, std::vector *p_dense_tensors) { auto *in = std::dynamic_pointer_cast(p_dense_contents->impl()) .get(); uint8_t *in_data = reinterpret_cast(in->data()); auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace()); size_t offset = 0; for (auto &tensor : *p_dense_tensors) { uint8_t *out_data = reinterpret_cast(tensor.data()); auto sz = tensor.numel() * sizeof(T); device->MemoryCopyD2D(out_data, in_data + offset, sz, nullptr); offset += sz; } } }; #endif // context is used to select the stream for concat template static void ConcatTensorsWithType( const DeviceContext &context, const std::vector &dense_tensors_, Tensor *p_dense_contents, phi::DataType type) { switch (type) { case phi::DataType::FLOAT16: ConcatTensorsForAllReduce()( context, dense_tensors_, p_dense_contents); break; case phi::DataType::FLOAT32: ConcatTensorsForAllReduce()( context, dense_tensors_, p_dense_contents); break; case phi::DataType::FLOAT64: ConcatTensorsForAllReduce()( context, dense_tensors_, p_dense_contents); break; case phi::DataType::BFLOAT16: ConcatTensorsForAllReduce()( context, dense_tensors_, p_dense_contents); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Data type (%s) is not supported when it concats tensors for " "allreduce.", type)); } } // context is used to select the stream for split template static void SplitTensorsWithType(const DeviceContext &context, Tensor *p_dense_contents, std::vector *p_dense_tensors, phi::DataType type) { switch (type) { case phi::DataType::FLOAT16: SplitTensorsForAllReduce()( context, p_dense_contents, p_dense_tensors); break; case phi::DataType::FLOAT32: SplitTensorsForAllReduce()( context, p_dense_contents, p_dense_tensors); break; case phi::DataType::FLOAT64: SplitTensorsForAllReduce()( context, p_dense_contents, p_dense_tensors); break; case phi::DataType::BFLOAT16: SplitTensorsForAllReduce()( context, p_dense_contents, p_dense_tensors); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Data type (%s) is not supported when it splits tensors for " "allreduce.", type)); } } void EagerGroup::ConcatTensors(const platform::Place &place) { dense_contents_ = paddle::experimental::empty(IntArray({all_length_}), dtype_, place); if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) auto *default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); ConcatTensorsWithType( *default_ctx, dense_tensors_, &dense_contents_, dtype_); #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't concat grad tensors since it's not compiled with NCCL," "Please recompile or reinstall Paddle with NCCL support.")); #endif } else if (platform::is_custom_place(place)) { #ifdef PADDLE_WITH_CUSTOM_DEVICE auto *default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); ConcatTensorsWithType( *default_ctx, dense_tensors_, &dense_contents_, dtype_); #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't concat grad tensors since it's not compiled with " "CUSTOM_DEVICE," "Please recompile or reinstall Paddle with CUSTOM_DEVICE support.")); #endif } else if (platform::is_cpu_place(place)) { auto *default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); ConcatTensorsWithType( *default_ctx, dense_tensors_, &dense_contents_, dtype_); } else { PADDLE_THROW(platform::errors::Unimplemented( "Concat grad tensor not supported on place (%s)", place)); } } void EagerGroup::SplitTensors(const platform::Place &place) { if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) auto *default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); SplitTensorsWithType( *default_ctx, &dense_contents_, &dense_tensors_, dtype_); #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't split grad tensor since it's not compiled with NCCL," "Please recompile or reinstall Paddle with NCCL support.")); #endif } else if (platform::is_custom_place(place)) { #ifdef PADDLE_WITH_CUSTOM_DEVICE auto *default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); SplitTensorsWithType( *default_ctx, &dense_contents_, &dense_tensors_, dtype_); #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't split grad tensor since it's not compiled with " "CUSTOM_DEVICE," "Please recompile or reinstall Paddle with CUSTOM_DEVICE support.")); #endif } else if (platform::is_cpu_place(place)) { auto *default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); SplitTensorsWithType( *default_ctx, &dense_contents_, &dense_tensors_, dtype_); } else { PADDLE_THROW(platform::errors::Unimplemented( "Split grad tensor not supported on place (%s)", place)); } } EagerReducer::EagerReducer( const std::vector tensors, const std::vector> &group_indices, const std::vector &is_sparse_gradient, std::shared_ptr process_group, const std::vector &group_size_limits, bool find_unused_parameters) : tensors_(tensors), group_indices_(group_indices), is_sparse_gradient_(is_sparse_gradient), process_group_(process_group), group_size_limits_(group_size_limits), find_unused_vars_each_step_(find_unused_parameters) { VLOG(3) << "Start construct the Reducer ..."; nranks_ = process_group_->GetSize(); // initialize groups InitializeGroups(group_indices); for (size_t global_var_index = 0; global_var_index < tensors_.size(); ++global_var_index) { auto tensor = tensors_[global_var_index]; auto reduce_hook = [=](void) -> void { this->AddDistHook(global_var_index); }; const auto &grad_node = GetGradNodeFromTensor(&tensor); PADDLE_ENFORCE( grad_node.get() != nullptr, paddle::platform::errors::Fatal("Detected NULL grad_node," "Leaf tensor should have had grad_node " "with type: GradNodeAccumulation")); const auto &accumulation_grad_node = std::dynamic_pointer_cast(grad_node); accumulation_grad_node->RegisterReduceHook( std::make_shared(reduce_hook)); gradnode_index_map_[grad_node.get()] = global_var_index; } vars_marked_ready_.resize(tensors_.size(), false); local_used_vars_.resize(tensors_.size(), 0); if (find_unused_vars_each_step_) { global_used_vars_ = paddle::experimental::empty( IntArray({static_cast(tensors_.size())}), DataType::INT32, inner_place_); } } std::shared_ptr EagerReducer::GetGradNodeFromTensor( Tensor *tensor) { auto *autograd_meta = tensor->get_autograd_meta(); const auto &grad_node = static_cast(autograd_meta)->GetMutableGradNode(); return grad_node; } void EagerReducer::InitializeGroups( const std::vector> &group_indices) { VLOG(3) << "Start initialize groups .."; // clear the group groups_.clear(); groups_.reserve(group_indices.size()); variable_locators_.clear(); variable_locators_.resize(tensors_.size()); auto group_nums = group_indices.size(); for (size_t group_index = 0; group_index < group_nums; ++group_index) { const auto &tensor_indices_ = group_indices[group_index]; PADDLE_ENFORCE_GT( tensor_indices_.size(), 0, platform::errors::PreconditionNotMet( "The number of group[%d]'s elements is 0.", group_index)); EagerGroup group; // It's just for check the sparse or dense auto first_var = tensors_[tensor_indices_.front()]; if (tensor_indices_.size() == 1 && is_sparse_gradient_[tensor_indices_.front()]) { // process the sparse gradient. one sparse, one group group.dtype_ = first_var.dtype(); group.is_sparse_ = true; } else { // process the dense gradient. InitializeDenseGroups(tensor_indices_, &group); } // map tensors to this group by VariableLocator size_t inside_group_index = 0; for (const auto var_index : tensor_indices_) { TensorLocator tensor_locator; tensor_locator.group_index = group_index; tensor_locator.inside_group_index = inside_group_index++; variable_locators_[var_index] = tensor_locator; } group.tensor_indices_ = std::move(tensor_indices_); groups_.emplace_back(std::move(group)); VLOG(3) << "The Group[" << group_index << "]:" << groups_.back(); } } void EagerReducer::InitializeDenseGroups( const std::vector &tensor_indices_, EagerGroup *p_group) { VLOG(3) << "InitializeDenseGroups."; int64_t all_length = 0; for (size_t index = 0; index < tensor_indices_.size(); ++index) { auto tensor_index = tensor_indices_[index]; auto &tensor = tensors_[tensor_index]; auto &tensor_name = tensor.name(); PADDLE_ENFORCE_EQ(is_sparse_gradient_[tensor_index], false, platform::errors::PreconditionNotMet( "Tensor %s's GRAD must be Tensor, but received " "GRAD is SelectedRows", tensor_name)); PADDLE_ENFORCE_EQ(tensor.initialized(), true, platform::errors::PreconditionNotMet( "Tensor %s is not initialized.", tensor_name)); const auto size = tensor.numel(); PADDLE_ENFORCE_GT( size, 0, platform::errors::PreconditionNotMet( "The number of tensor %s's elements is 0.", tensor_name)); all_length += size; p_group->length_.push_back(size); // for concat operator p_group->origin_shapes_.push_back(IntArray(tensor.shape())); p_group->dense_tensors_.push_back(phi::DenseTensor()); const auto &dtype = tensor.dtype(); const auto &inner_place = tensor.impl()->place(); if (index > 0) { PADDLE_ENFORCE_EQ(dtype, p_group->dtype_, platform::errors::PreconditionNotMet( "Tensor %s has unexpected dtype.", tensor_name)); } else { p_group->dtype_ = dtype; inner_place_ = inner_place; } } p_group->all_length_ = all_length; } void EagerReducer::TraverseBackwardGraph(const std::vector &outputs) { std::queue queue; std::set visited; for (const auto &output : outputs) { auto *auto_grad_meta = static_cast(output.get_autograd_meta()); if (!auto_grad_meta) continue; auto shared_grad_node = auto_grad_meta->GetMutableGradNode(); if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr || auto_grad_meta->StopGradient()) { continue; } egr::GradNodeBase *grad_node = shared_grad_node.get(); queue.emplace(grad_node); } while (!queue.empty()) { egr::GradNodeBase *node = queue.front(); queue.pop(); const paddle::small_vector, egr::kSlotSmallVectorSize> &metas = node->OutputMeta(); for (size_t i = 0; i < metas.size(); i++) { for (size_t j = 0; j < metas[i].size(); j++) { const egr::Edge &edge = metas[i][j].GetEdge(); auto next_node_shared = edge.GetMutableGradNode(); if (!next_node_shared || !next_node_shared.get()) { continue; } auto *next_node = next_node_shared.get(); const bool was_inserted = visited.insert(next_node).second; if (was_inserted) { queue.emplace(next_node); } } } } for (const auto &it : gradnode_index_map_) { if (visited.count(it.first) == 0) { unused_vars_.push_back(it.second); VLOG(3) << "[Rank " << process_group_->GetRank() << "]: " << "Tensor " << tensors_[it.second].name() << " at index " << it.second << " is marked as unused."; } } } void EagerReducer::PrepareForBackward(const std::vector &outputs) { VLOG(3) << "after forward, then reset count for backward."; grad_need_hooks_ = true; next_group_ = 0; std::for_each(groups_.begin(), groups_.end(), [](EagerGroup &group) { group.pending_ = group.tensor_indices_.size(); group.sparse_contents_ = Tensor(); }); // reinitialize vars_marked_ready_ for next iteration vars_marked_ready_.clear(); vars_marked_ready_.resize(tensors_.size(), false); PADDLE_ENFORCE_EQ( groups_need_finalize_, false, platform::errors::PreconditionNotMet( "A serious error has occurred here. Please " "set find_unused_parameters=True to traverse backward graph " "in each step to prepare reduce in advance. If you have " "set, There may be several reasons for this error: " "1) Please note that all forward outputs derived from the module " "parameters must participate in the calculation of losses and " "subsequent gradient calculations. If not, the wrapper will hang, " "waiting for autograd to generate gradients for these parameters. " "you can use detach or stop_gradient to make the unused parameters " "detached from the autograd graph. " "2) Used multiple forwards and one backward. You may be able to wrap " "multiple forwards in a model.")); // The first var to trigger the unused parameter has_marked_unused_vars_ = false; if (find_unused_vars_once_ || find_unused_vars_each_step_) { unused_vars_.clear(); TraverseBackwardGraph(outputs); // only check once in first step find_unused_vars_once_ = false; } if (find_unused_vars_each_step_ && unused_vars_.empty()) { LOG_FIRST_N(WARNING, 1) << "All parameters are involved in the backward pass. " "It is recommended to set find_unused_parameters to False " "to improve performance. However, if unused parameters " "appear in subsequent iterative training, then an error " "will occur. Please make it clear that in the subsequent " "training, there will be no parameters that are not used " "in the backward pass, and then set find_unused_parameters"; } if (unused_vars_.size() == tensors_.size()) { LOG_FIRST_N(WARNING, 1) << "There is no parameter in the device involved " "in the backward calculation. If there are " "parameters on other devices involved in the " "backward, then a serious error will occur here."; } } void EagerReducer::AddDistHook(size_t var_index) { PADDLE_ENFORCE_LT(var_index, variable_locators_.size(), platform::errors::OutOfRange( "Out of bounds variable index. it must be less" "than %d, but it is %d", variable_locators_.size(), var_index)); // gradient synchronization is not required when grad_need_hooks_ is false. if (!grad_need_hooks_) { return; } VLOG(3) << "Tensor[" << var_index << "] [" << tensors_[var_index].name() << "@Grad] arrived and triggered disthook"; local_used_vars_[var_index] = 1; if (!has_marked_unused_vars_) { has_marked_unused_vars_ = true; for (const auto unused_index : unused_vars_) { MarkVarReady(unused_index, false); } } MarkVarReady(var_index, true); } void EagerReducer::MarkVarReady(const size_t var_index, const bool is_used_var) { VLOG(3) << "Tensor[" << var_index << "][" << tensors_[var_index].name() << "] is marked ready."; // error happened, if the var is ready before. if (vars_marked_ready_[var_index]) { auto error_info = string::Sprintf( "Error happened, when parameter[%d][%s] has been ready before. " "Please set find_unused_parameters=True to traverse backward graph " "in each step to prepare reduce in advance. If you have set, " "there may be several reasons for this error: " "1) In multiple reentrant backward phase, some parameters are reused." "2) Using model parameters outside of forward function. Please " "make sure that model parameters are not shared in concurrent " "forward-backward passes.", var_index, tensors_[var_index].name()); PADDLE_ENFORCE_EQ(has_marked_unused_vars_, false, platform::errors::PreconditionNotMet(error_info)); error_info += "3) Unused parameters retrieval is incorrect. " "The return value of forward will be used to retrieve" " the unused parameters of the entire model. These " "gradients of unused parameters will not be synchronized " "between multiple cards. However, if the unused " "parameters participate in the backward calculation " "again at a later time (e.g. after the forward function, " "the loss calculation uses the unused " "paramters of the forward and trigger backward), " "its gradient will be wrong."; PADDLE_ENFORCE_EQ(has_marked_unused_vars_, true, platform::errors::PreconditionNotMet(error_info)); } else { vars_marked_ready_[var_index] = true; } groups_need_finalize_ = true; const auto &var_locator = variable_locators_[var_index]; const auto group_index = var_locator.group_index; const auto inside_group_index = var_locator.inside_group_index; auto &group = groups_[group_index]; auto &group_tensor = group.dense_tensors_[inside_group_index]; const auto length = group.length_[inside_group_index]; if (!group.is_sparse_) { if (is_used_var) { auto *autograd_meta = tensors_[var_index].get_autograd_meta(); auto &grad_tensor = static_cast(autograd_meta)->Grad(); group_tensor .ShareDataWith(*( std::dynamic_pointer_cast(grad_tensor.impl()))) .Resize({grad_tensor.numel()}); } else { // TODO(shenliang03): maybe save the memory by avoiding tensor // construction if (!group_tensor.initialized()) { group_tensor.Resize({static_cast(length)}); group_tensor.mutable_data(inner_place_, group.dtype_); } if (HasGrad(var_index)) { VLOG(3) << "Tensor[" << tensors_[var_index].name() << "] has grad"; auto grad_tensor = egr::EagerUtils::mutable_grad(tensors_[var_index]); group_tensor .ShareDataWith(*(std::dynamic_pointer_cast( grad_tensor->impl()))) .Resize({length}); } else { VLOG(3) << "Tensor[" << tensors_[var_index].name() << "] doesn't have grad"; auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_); group_tensor.Resize({static_cast(length)}); phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0); } } } else { auto *autograd_meta = tensors_[var_index].get_autograd_meta(); auto &grad_tensor = static_cast(autograd_meta)->Grad(); // process sparse group PADDLE_ENFORCE_EQ( HasGrad(var_index), true, platform::errors::PreconditionNotMet( "The sparse parameter[%d][%s] should have gradient. " "Currently, DataParallel does not support sparse " "parameters without generating gradients during training. " "For example, if is_sparese=True is used in Embedding, " "the current step of this parameter cannot generate gradient " "because of stop_gradient/detatch, where error will occur.", var_index, tensors_[var_index].name())); // need to check tensor type PADDLE_ENFORCE_EQ( grad_tensor.is_selected_rows(), true, platform::errors::PreconditionNotMet( "The sparse parameter[%d][%s] must have a selectedrows gradient. " "Before forward pass, the parameter type is inferred to be " "SelectedRows, but after backward pass, its actual type becomes " "LodTensor. It is currently not supported by DataParallel. " "For example, if sparse embedding is used, and the weight of " "embedding is shared with subsequent dense parameters, then " "the parameter gradient of the embedding will be converted " "to dense parameters.", var_index, tensors_[var_index].name())); group.sparse_contents_.set_impl(grad_tensor.impl()); } if (--group.pending_ == 0) { // can start allreduce MarkGroupReady(group_index); } if (next_group_ == groups_.size()) { FinalizeBackward(); } } void EagerReducer::MarkGroupReady(size_t group_index) { VLOG(3) << "Group[" << group_index << "] is ready"; PADDLE_ENFORCE_GE( group_index, next_group_, platform::errors::PreconditionNotMet( "The index of the incoming group must be greater " "than or equal to the previously synchronized group index, " "expect it to greater than or equal to %d, but got %d.", next_group_, group_index)); if (group_index > next_group_) { VLOG(3) << "It will adjust the order of group in next batch automatically"; return; } for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0; ++next_group_) { UNUSED auto &group = groups_[next_group_]; if (group.is_sparse_) { AllReduceSparse(&group, next_group_); } else { FusedAllReduceSchedule(&group, next_group_); } } } bool EagerReducer::HasGrad(size_t var_index) { auto grad = egr::EagerUtils::mutable_grad(tensors_[var_index]); if (grad && grad->initialized()) { return true; } else { return false; } } void EagerReducer::ProcessUnusedDenseVars() { // The calculation stream must be used here to // avoid conflicts with communication. VLOG(3) << "Local used vars : " << string::join_strings(local_used_vars_, ','); const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_); auto *global_used_tensor = std::dynamic_pointer_cast(global_used_vars_.impl()) .get(); framework::TensorFromVector( local_used_vars_, *dev_ctx, global_used_tensor); distributed::AllreduceOptions opts; opts.reduce_op = ReduceOp::SUM; std::vector reduce_tensors = {global_used_vars_}; std::vector in_out; for (auto &t : reduce_tensors) { in_out.push_back(*std::dynamic_pointer_cast(t.impl())); } process_group_->AllReduce(in_out, in_out, opts)->Synchronize(); framework::TensorToVector( *global_used_tensor, *dev_ctx, &local_used_vars_); dev_ctx->Wait(); // sync compute stream to get global used var message, // but maybe affect speed performance VLOG(3) << "Global used vars : " << string::join_strings(local_used_vars_, ','); for (const auto var_index : unused_vars_) { const bool global_unused = (local_used_vars_[var_index] == 0); // global used but local unused, set grad VLOG(3) << "[Rank " << process_group_->GetRank() << "]: " << "Var [" << var_index << "] [" << tensors_[var_index].name() << "] global_unused: " << global_unused << " has grad: " << HasGrad(var_index); if (!global_unused) { VLOG(3) << "Set Tensor[" << var_index << "]'s Grad for [Rank " << process_group_->GetRank() << "]"; const auto &var_locator = variable_locators_[var_index]; const auto group_index = var_locator.group_index; const auto &group = groups_[group_index]; const auto inside_group_index = var_locator.inside_group_index; auto &src_tensor = group.dense_tensors_[inside_group_index]; // sparse no need to check and no support find_unused_parameters if (group.is_sparse_) { continue; } // NOTE(haohongxiang): Calling SetFakeEmpty here is to make sure that // gradient accumulation can continue normally after clear_gradients() // especiall in cases including complex control flow. std::static_pointer_cast( GetGradNodeFromTensor(&tensors_[var_index])) ->SetFakeEmpty(false); Tensor grad_value(std::make_shared(src_tensor)); auto dest_var_base = tensors_[var_index]; auto grad_tensor = egr::EagerUtils::mutable_grad(dest_var_base); grad_tensor->copy_(grad_value, inner_place_, true); grad_tensor->reshape(dest_var_base.shape()); } } } void EagerReducer::FinalizeBackward() { groups_need_finalize_ = false; grad_need_hooks_ = false; for (auto &group : groups_) { if (!group.is_sparse_) { group.task->Synchronize(); } } for (auto &group : groups_) { if (!group.is_sparse_) { group.SplitTensors(inner_place_); group.dense_contents_.reset(); } } if (find_unused_vars_each_step_) { ProcessUnusedDenseVars(); local_used_vars_.clear(); local_used_vars_.resize(tensors_.size(), 0); VLOG(3) << "ProcessUnusedDenseVars is finished."; } VLOG(3) << "In the batch, Reducer is finished."; } void EagerReducer::FusedAllReduceSchedule(EagerGroup *group, const int curr_group_index) { // The overall timeline: concat > div_nranks > allreduce > split distributed::AllreduceOptions opts; opts.reduce_op = ReduceOp::SUM; VLOG(3) << "group [" << curr_group_index << "] start fused_allreduce."; // concat tensors group->ConcatTensors(inner_place_); // div nranks paddle::experimental::scale_( group->dense_contents_, 1.0 / nranks_, 0.0, false); // all_reduce std::vector reduce_tensors = {group->dense_contents_}; std::vector in_out; for (auto &t : reduce_tensors) { in_out.push_back(*std::dynamic_pointer_cast(t.impl())); } group->task = process_group_->AllReduce(in_out, in_out, opts); // split in FinalizeBackward() } void EagerReducer::AllReduceSparse(EagerGroup *group, const int curr_group_index) { // div nranks Tensor sparse_tensor(group->sparse_contents_); paddle::experimental::scale_(sparse_tensor, 1.0 / nranks_, 0.0, false); VLOG(3) << "sparse_group [" << curr_group_index << "] start allreduce."; auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_); if (platform::is_gpu_place(inner_place_)) { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(inner_place_)); #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't concat grad tensors since it's not compiled with NCCL," "Please recompile or reinstall Paddle with NCCL support.")); #endif } else if (platform::is_custom_place(inner_place_)) { #ifdef PADDLE_WITH_CUSTOM_DEVICE dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(inner_place_)); #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't concat grad tensors since it's not compiled with " "CUSTOM_DEVICE," "Please recompile or reinstall Paddle with CUSTOM_DEVICE support.")); #endif } else if (platform::is_cpu_place(inner_place_)) { dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(inner_place_)); } else { PADDLE_THROW(platform::errors::Unimplemented( "Split grad tensor not supported on place (%s)", inner_place_)); } auto src = std::dynamic_pointer_cast( group->sparse_contents_.impl()); const auto &src_rows = src->rows(); const auto &rank_ = process_group_->GetRank(); const auto &size_ = process_group_->GetSize(); framework::Vector rows_num_vector(size_); rows_num_vector[rank_] = static_cast(src_rows.size()); Tensor rows_num_tensor = paddle::experimental::empty( IntArray({static_cast(size_)}), DataType::INT64, inner_place_); auto *rows_num_dense_tensor = std::dynamic_pointer_cast(rows_num_tensor.impl()).get(); framework::TensorFromVector( rows_num_vector, *dev_ctx, rows_num_dense_tensor); distributed::AllreduceOptions opts; opts.reduce_op = ReduceOp::SUM; std::vector reduce_tensors = {rows_num_tensor}; std::vector in_out; for (auto &t : reduce_tensors) { in_out.push_back(*std::dynamic_pointer_cast(t.impl())); } process_group_->AllReduce(in_out, in_out, opts)->Synchronize(); framework::TensorToVector( *rows_num_dense_tensor, *dev_ctx, &rows_num_vector); dev_ctx->Wait(); const auto *cpu_rows_num_ptr = rows_num_vector.data(); auto rows_num = std::accumulate( cpu_rows_num_ptr, cpu_rows_num_ptr + size_, static_cast(0)); VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',') << ", total rows number: " << rows_num << ", height: " << src->height(); dev_ctx->Wait(); Tensor src_value_tensor(std::make_shared(src->value())); std::vector dst_shape = src_value_tensor.shape(); if (std::all_of(cpu_rows_num_ptr, cpu_rows_num_ptr + size_, [&](int64_t row) { return row == cpu_rows_num_ptr[0]; })) { // During sparse communication, the number of each card is same. // allgather is used to speed up the allreduce by replacing broadcast. VLOG(3) << "allgather replaces broadcast to speed up in sparse allreduce"; Tensor dst_rows_tensor = paddle::experimental::empty(IntArray({static_cast(rows_num)}), DataType::INT64, inner_place_); Tensor src_rows_tensor = paddle::experimental::empty( IntArray({static_cast((*src).rows().size())}), DataType::INT64, inner_place_); auto *src_rows_dense_tensor = std::dynamic_pointer_cast(src_rows_tensor.impl()) .get(); framework::TensorFromVector( (*src).rows(), *dev_ctx, src_rows_dense_tensor); std::vector src_rows_tensors = {src_rows_tensor}; std::vector dst_rows_tensors = {dst_rows_tensor}; std::vector in; std::vector out; for (auto &t : src_rows_tensors) { in.push_back(*std::dynamic_pointer_cast(t.impl())); } for (auto &t : dst_rows_tensors) { out.push_back(*std::dynamic_pointer_cast(t.impl())); } process_group_->AllGather(in, out)->Synchronize(); framework::Vector dst_rows_vector(rows_num, 0); auto *dst_rows_dense_tensor = std::dynamic_pointer_cast(dst_rows_tensor.impl()) .get(); framework::TensorToVector( *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector); dev_ctx->Wait(); dst_shape[dst_shape.size() - 2] = rows_num; auto dst_dense_tensor = std::dynamic_pointer_cast( paddle::experimental::full( IntArray(dst_shape), 0, src_value_tensor.dtype(), inner_place_) .impl()); auto dst = std::make_shared(dst_rows_vector, (*src).height()); *(dst->mutable_value()) = *dst_dense_tensor; Tensor dst_value_tensor(std::make_shared(dst->value())); std::vector src_value_tensors = {src_value_tensor}; std::vector dst_value_tensors = {dst_value_tensor}; std::vector src_dense; std::vector dst_dense; for (auto &t : src_value_tensors) { src_dense.push_back( *std::dynamic_pointer_cast(t.impl())); } for (auto &t : dst_value_tensors) { dst_dense.push_back( *std::dynamic_pointer_cast(t.impl())); } process_group_->AllGather(src_dense, dst_dense)->Synchronize(); src->set_rows(dst_rows_vector); *(src->mutable_value()) = *(std::dynamic_pointer_cast(dst_value_tensor.impl())); } else { std::vector rows_tensors; std::vector values_tensors; for (int i = 0; i < size_; ++i) { std::vector value_tensor_shape = { cpu_rows_num_ptr[i], dst_shape[dst_shape.size() - 1]}; Tensor rows_tensor = paddle::experimental::full( IntArray({static_cast(cpu_rows_num_ptr[i])}), 0, DataType::INT64, inner_place_); Tensor values_tensor = paddle::experimental::full( IntArray(value_tensor_shape), 0, src->value().dtype(), inner_place_); std::vector rows_dense_vector; std::vector values_dense_vector; if (i == rank_) { auto *rows_dense_tensor = std::dynamic_pointer_cast(rows_tensor.impl()) .get(); framework::TensorFromVector( src_rows, *dev_ctx, rows_dense_tensor); values_tensor.set_impl( std::make_shared(src->value())); } rows_dense_vector.push_back( *std::dynamic_pointer_cast(rows_tensor.impl())); values_dense_vector.push_back( *std::dynamic_pointer_cast(values_tensor.impl())); auto b_opts = BroadcastOptions(); b_opts.source_rank = i; process_group_->Broadcast(rows_dense_vector, rows_dense_vector, b_opts); process_group_ ->Broadcast(values_dense_vector, values_dense_vector, b_opts) ->Wait(); rows_tensors.push_back(rows_tensor); values_tensors.push_back(values_tensor); } Tensor dst_rows_tensor = paddle::experimental::concat(rows_tensors, phi::Scalar(0)); framework::Vector dst_rows_vector(rows_num, 0); auto *dst_rows_dense_tensor = std::dynamic_pointer_cast(dst_rows_tensor.impl()) .get(); framework::TensorToVector( *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector); src->set_rows(dst_rows_vector); Tensor dst_values_tensor = paddle::experimental::concat(values_tensors, phi::Scalar(0)); *(src->mutable_value()) = *( std::dynamic_pointer_cast(dst_values_tensor.impl())); } } std::ostream &operator<<(std::ostream &out, const EagerGroup &group) { const auto &tensors_ = group.tensor_indices_; out << "numel: " << group.all_length_ << " ;var number: " << tensors_.size() << "\n"; auto begin = tensors_.begin(); auto end = tensors_.end(); out << "["; for (int i = 0; begin != end && i < 100; ++i, ++begin) { if (i > 0) out << ' '; out << *begin; } if (begin != end) { out << " ..."; } out << "]\n"; return out; } } // namespace distributed } // namespace paddle