/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/platform/dynload/tensorrt.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/core/utils/data_type.h" namespace paddle { namespace inference { namespace tensorrt { #define IS_TRT_VERSION_GE(version) \ ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \ NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version) #define IS_TRT_VERSION_LT(version) \ ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \ NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version) #define TRT_VERSION \ NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \ NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD #if IS_TRT_VERSION_GE(8000) #define TRT_NOEXCEPT noexcept #else #define TRT_NOEXCEPT #endif namespace dy = paddle::platform::dynload; // TensorRT data type to size const int kDataTypeSize[] = { 4, // kFLOAT 2, // kHALF 1, // kINT8 4 // kINT32 }; // The following two API are implemented in TensorRT's header file, cannot load // from the dynamic library. So create our own implementation and directly // trigger the method from the dynamic library. static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) { return static_cast( dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION)); } static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) { return static_cast( dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION)); } #if IS_TRT_VERSION_GE(6000) static nvinfer1::IPluginRegistry* GetPluginRegistry() { return static_cast(dy::getPluginRegistry()); } static int GetInferLibVersion() { return static_cast(dy::getInferLibVersion()); } #else static int GetInferLibVersion() { return 0; } #endif static std::tuple GetTrtRuntimeVersion() { int ver = GetInferLibVersion(); int major = ver / 1000; ver -= major * 1000; int minor = ver / 100; int patch = ver - minor * 100; return std::tuple{major, minor, patch}; } static std::tuple GetTrtCompileVersion() { return std::tuple{ NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH}; } static float TrtMajorVersion(int full_version) { return (full_version / 100) / 10.0; } template struct Destroyer { void operator()(T* x) { if (x) { x->destroy(); } } }; template using infer_ptr = std::unique_ptr>; // A logger for create TensorRT infer builder. class NaiveLogger : public nvinfer1::ILogger { public: void log(nvinfer1::ILogger::Severity severity, const char* msg) TRT_NOEXCEPT override { switch (severity) { case Severity::kVERBOSE: VLOG(3) << msg; break; case Severity::kINFO: VLOG(2) << msg; break; case Severity::kWARNING: LOG(WARNING) << msg; break; case Severity::kINTERNAL_ERROR: case Severity::kERROR: LOG(ERROR) << msg; break; default: break; } } static nvinfer1::ILogger& Global() { static nvinfer1::ILogger* x = new NaiveLogger; return *x; } ~NaiveLogger() override {} }; class NaiveProfiler : public nvinfer1::IProfiler { public: typedef std::pair Record; std::vector mProfile; void reportLayerTime(const char* layerName, float ms) TRT_NOEXCEPT override { auto record = std::find_if(mProfile.begin(), mProfile.end(), [&](const Record& r) { return r.first == layerName; }); if (record == mProfile.end()) mProfile.push_back(std::make_pair(layerName, ms)); else record->second += ms; } void printLayerTimes() { float totalTime = 0; for (size_t i = 0; i < mProfile.size(); i++) { printf( "%-40.40s %4.3fms\n", mProfile[i].first.c_str(), mProfile[i].second); totalTime += mProfile[i].second; } printf("Time over all layers: %4.3f\n", totalTime); } }; inline size_t ProductDim(const nvinfer1::Dims& dims) { size_t v = 1; for (int i = 0; i < dims.nbDims; i++) { v *= dims.d[i]; } return v; } inline void PrintITensorShape(nvinfer1::ITensor* X) { auto dims = X->getDimensions(); auto name = X->getName(); std::cout << "ITensor " << name << " shape: ["; for (int i = 0; i < dims.nbDims; i++) { if (i == dims.nbDims - 1) std::cout << dims.d[i]; else std::cout << dims.d[i] << ", "; } std::cout << "]\n"; } template inline std::string Vec2Str(const std::vector& vec) { std::ostringstream os; if (vec.empty()) { os << "()"; return os.str(); } os << "("; for (size_t i = 0; i < vec.size() - 1; ++i) { os << vec[i] << ","; } os << vec[vec.size() - 1] << ")"; return os.str(); } static inline nvinfer1::DataType PhiType2NvType(phi::DataType type) { nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT; switch (type) { case phi::DataType::FLOAT32: nv_type = nvinfer1::DataType::kFLOAT; break; case phi::DataType::FLOAT16: nv_type = nvinfer1::DataType::kHALF; break; case phi::DataType::INT32: case phi::DataType::INT64: nv_type = nvinfer1::DataType::kINT32; break; case phi::DataType::INT8: nv_type = nvinfer1::DataType::kINT8; break; #if IS_TRT_VERSION_GE(7000) case phi::DataType::BOOL: nv_type = nvinfer1::DataType::kBOOL; break; #endif default: paddle::platform::errors::InvalidArgument( "phi::DataType not supported data type %s.", type); break; } return nv_type; } using FluidDT = paddle::framework::proto::VarType_Type; using TRT_DT = nvinfer1::DataType; static TRT_DT FluidDataType2TRT(FluidDT type) { switch (type) { case FluidDT::VarType_Type_FP32: case FluidDT::VarType_Type_FP64: return TRT_DT::kFLOAT; case FluidDT::VarType_Type_INT32: case FluidDT::VarType_Type_INT64: return TRT_DT::kINT32; case FluidDT::VarType_Type_FP16: return TRT_DT::kHALF; #if IS_TRT_VERSION_GE(8400) case FluidDT::VarType_Type_BOOL: return TRT_DT::kBOOL; #endif default: PADDLE_THROW(paddle::platform::errors::InvalidArgument( "unsupported datatype in TRT op converter, type: %s. " "Boolean type is supported as TRT input/output " "using TensorRT v8.4+.", VarType_Type_Name(type))); } return TRT_DT::kINT32; } // The T can be int32 or int64 type. template static nvinfer1::Dims Vec2TRT_Dims(const std::vector& shape, std::string input, bool with_dynamic_shape = false) { PADDLE_ENFORCE_GE(shape.size(), 0UL, paddle::platform::errors::InvalidArgument( "TensorRT's tensor input requires at least 0 " "dimensions, but input %s has %d dims.", input, shape.size())); auto ShapeStr = [](const std::vector& shape) { std::ostringstream os; os << "["; for (size_t i = 0; i < shape.size(); ++i) { if (i == shape.size() - 1) { os << shape[i]; } else { os << shape[i] << ","; } } os << "]"; return os.str(); }; if (!with_dynamic_shape) { if (shape.size() == 4UL) { if (shape[2] == -1 || shape[3] == -1) { PADDLE_THROW(platform::errors::InvalidArgument( "The input [%s] shape of trt subgraph is %s, please enable " "trt dynamic_shape mode by SetTRTDynamicShapeInfo.", input, ShapeStr(shape))); } return nvinfer1::Dims3(shape[1], shape[2], shape[3]); } else if (shape.size() == 5UL) { if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "The input [%s] shape of trt subgraph is %s, please enable " "trt dynamic_shape mode by SetTRTDynamicShapeInfo.", input, ShapeStr(shape))); } return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]); } else if (shape.size() == 3UL) { if (shape[1] == -1 || shape[2] == -1) { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "The input [%s] shape of trt subgraph is %s, please enable " "trt dynamic_shape mode by SetTRTDynamicShapeInfo.", input, ShapeStr(shape))); } return nvinfer1::Dims2(shape[1], shape[2]); } else if (shape.size() == 2UL) { if (shape[1] == -1) { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "The input [%s] shape of trt subgraph is %s, please enable " "trt dynamic_shape mode by SetTRTDynamicShapeInfo.", input, ShapeStr(shape))); } nvinfer1::Dims dims; dims.nbDims = 1; dims.d[0] = shape[1]; return dims; } // static shape doesn't support 1D op so far. PADDLE_ENFORCE_NE(shape.size(), 1UL, paddle::platform::errors::InvalidArgument( "The input [%s] shape of trt subgraph is %s." "it's not supported by trt so far", input, ShapeStr(shape))); nvinfer1::Dims dims; dims.nbDims = shape.size() - 1; for (size_t i = 1; i < shape.size(); i++) { dims.d[i - 1] = shape[i]; } return dims; } else { if (shape.size() == 4UL) { return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]); } else if (shape.size() == 3UL) { return nvinfer1::Dims3(shape[0], shape[1], shape[2]); } nvinfer1::Dims dims; dims.nbDims = shape.size(); for (size_t i = 0; i < shape.size(); i++) { dims.d[i] = shape[i]; } return dims; } } } // namespace tensorrt } // namespace inference } // namespace paddle